
HD-Ai38 152 DEVELOPMENT OF A COMMUNICATIONS FRONT END PROCESSOR 1/3
(FEP) FOR THE VAX-lit .(U) AIR FORCE INST OF TECH
IRIGHT-PATTERSON AFB OH SCHOOL OF ENGI.. A F MASTY

UNCLASSIFIED DEC 83 AFIT/GCS/EE/83D-iT F/G 17/2 N

EohEEmhohmoiI

2I11 son..son..fflflf

-1..

L.

4,

.2 "

I *,

11111 '' .. iiii
1.25 11111U 111111.

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963-A

-- 4

..-...

..- :
,-.

5-.
".9

0 DEVEL.OPMENT OF A~ COMMUNICATIONS
* FRONT END PROCESSOR (FEP)

FOP THE VAX-11/780
USING AN LSI-11/23

THESIS

AFIT/GCS/EE /'83D-1 3
Allan F. Masty
Capt USAF

ELECTE
'SWFEB2 2 184

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY (ATC) ,r

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright- Patterson Air Force Base, Ohio

Jiorpubc aand al f 0108 0

AF IT/ GCS/EE/83D-1 3

5.'Aw

-p

DEVELOPMENT OF A COMMUNICATIONS
FRONT END PROCESSOR (FEP)

FOR THE VAX-11/780
USING AN LSI-11/23

THESIS

AFIT/GCS/EE/83D-1 3
Allan F. Masty
Capt USAF

DTIC
JMELECTES84D

Fss E ")1E
Approved for public release; distribution unlimited.

4'1" . 5.

5" .; ", ". ". ,•J , '-" "' ,"" ' ' ' ." " --- . . - -"" """ -"••- ". ' .% '''; -

AFIT/GCS/EE/83D-13

DEVELOPMENT OF A COMMUNICATIONS

FRONT END PROCESSOR (FEP)

FOR THE VAX-11/780

USING AN LSI-11/23

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

in Partial Fulfillment of the

Requirements for the degree of

Master of Science in Computer Science

by

4Allan F. Masty

Capt USAF

Graduate Electrical Engineering

December 1983

Approved for public release; distribution unlimited.

.1

-4

,4,.€ . ",. . .-. , ,:? ., : . .:... ,,...? .

.,r* .

As complacent human beings, we often take for granted

many of the things which mean the most to us. During my
-.

,%

degree efforts, I re-awakened to many of the reasons why I

married my beautiful wife, Rosanne. Without her loving

understanding and deep-felt support, this thesis would not

have been possible. She was my prod and support, my

counselor and my partner. To her do I dedicate this work.

I wish to thank my thesis advisor, Dr. Gary Lamont and

the other members of my thesis committee, Major Walter

Seward and Captain John Gordon, for the timely help and

direction they provided me. Thanks also to the local "C"

language guru, Dr. Thomas Hartrum, who provided invaluable

insight into what, at times, appeared to be a demonic

compiler.

I also wish to thank my sons, Jeff and Chris. For 18

months, both had to do without some part of me and my time

to which they had become accustomed --- only to be replaced

by the rantings and ravings of some sort of ogre trapped in

the body of an AFIT student. Accession For
NTIS GRA&I

DTIC TAB
Unannounced E
Justification

By
Distribution/
Availability Codes

Avail and/or

Dist Special

- - - - - -- - - - - - - 6 -7 -_4 .. 1 W~~~

TABLE OF CONTENTS

Preface . .0.. ii
List of Figures vii
List of Tables a vii
Abstract . a . a a viii

CHAPTER 1 INTRODUCTION

Purpose . 1
Background e 2
Problem 9

Approach 11
Software Development Life Cycle 11

Requirements Analysis 11
Specification 12

Operation a Maine n nc 13
, Testing 12

Software Engineering Techniques 14
Top-Down Design a . . a . . . 14
Top-Down Development o 14
Structured Programming 15

Development Tools and Documentation Aids 15
Structure Charts 16
Data Dictionary 16
Program Design Language (PDL) 16

Overview Of Thesis 17

CHAPTER 2 REQUIREMENTS ANALYSIS AND DESIGN DECISIONS

System Level Requirements 19
Local Computer Network. 19
Host Operating System. 19
FEP Operating System. 21
Consistent User Interface. 21

?. iii

,.5

Operating Environment Compatability. 22
Supportability. 22

- Minimum Cost. 22
Data Security. 23

Requirements Prioritization 23
Top Priority. 24
High Priority t. 25

Provide Single-User Evirone 25
Consistent With VAX/VMS Operation. 26
Unattended Operation. 26
Support for 7 Interactive Terminals. 26

Medium Priority. 27
Easy to Learn and Use 28
Processing Support Invisible to the User. . 28
Support for LCN Study 28
Expansion. 29

Low Priority. 30
Procedural Assistance. 30
Support for On-Line Printer. 30
DELNET Integration. 31

Design Decisions And Tradeoffs 31
Execution Speed vs Program Size. 32
Interrupt Structuring 33
Device Handlers vs. Interrupt Service Routines. 36
Device Priority 37
Virtual Mapping vs. Privileged Mapin 39

" Processor Transition to System State. 40
RT-11 Extended Memory (XM) Utilization. 42

G, High Level Language Selection. 44
Summary . 45

CHAPTER 3 NETWORK DESIGN AND PROTOCOL ISSUES

Logically Connected Nodes 47
LSI System Manager (LSM) 49
LSI Terminal Manager (LTM)49
LSI Link Manager (LLM) . . . 0 .0 0 0 . . . 49
LSI Printer Manager (LPM)49
VAX Link Manager (VLM) 50
VAX Process Manager (VPM) 50
VAX System Manager (VSM) 50

. Physically Connected Nodes 50
Protocol Layers 51

Physical (Layer 1) 0 51
Terminal Multiplexing 51
Terminal Concentration 53
Packet Assembly/Disassembly 55
Error Control 55

Data Link (Layer 2) 55
Error Control 56

. -iv

L:W1

Frame Control 56
Buffer and Flow Control 56

.- Sequence Numbering 58
-'Network (Layer 3) 58

Error Control 59
Sequence Control 59
Buffering and Congestion Control 59
Acouting. o 60

Transport (Layer 4) . a 61
Address and Connection 61
Flow Contro. .o.o. .. o.. 61
Process Multiplexing . o o . . o . o o o . o . 63
Error Control . . o 63

*Sequencing and Segmentation . o . o o . . 63
Command Completion Sensing PAD 65

Session (Layer 5) o . o . . . o . o 65
Presentation (Layer 6) o . . . o . . o . . . 66
Application (Layer 7) . o o o . 66

Summary . o . . o . . . o o . . . 66

CHAPTER 4 SOFTWARE DESIGN AND IMPLEMENTATION

Software Capabilities And Limitations o . . o . o 69
Structured Constructs o . . . 69
Data Structures o . . . 70
Global vs. Automatic Variables . o o 70
Variable Name Lengths o 70
Limited Symbolic Definition Capability 71:1 Module Communication Conventions T 2

.4Character Arrays o 72
Structure Tables o 73

Overview Of The Software Structure o 73
*Low Memory Software 74

Extended Memory Software o . . . 76
Synopsis Of Program Modules 77

.4Low Memory Modules . .e.g. *.. .. 77
Extended Memory Modules . *.. 89

Summary . 92

CHAPTER 5 SOFTWARE TEST AND EVALUATION

Testing Methodology 93
Requirements-based Testing 93
Program-based Testing . . . o 95
Branch Tesngn.. 0 a. .. 96
Statement Testing o 96
Path Testing 96

Testing Results 97

-U-

Black-box Testing Results 97
Software on Each Procezsor 97

-* Comm Link Support (Host O/S) 102
' Procedural Assistance 103

Support for a Line Printer 103
. DELNET Integration 103

Physical Configuration Expansion Suppr . . . 103
White-box Testing Results 103

Support for LCN Study 04
Summary . 105

CHAPTER 6 CONCLUSION

The Problem Revisited 106
Accomplishments 107

Hardware Improvements 107
Software Improvements 108

Discussion 108Scope 1 08

Requirements Prioritization 109
Design Decisions and Tradeoffs 109
Network Design and Protocol Issues 110
Software Design and Implementation 110
Software Test and Evaluation 111

Recommendations D. r . s ti. 111
DR-11B Device Driver Intlain 111
Data Link Protocol112
Buffer Sizing 112
Number of Terminals 113
LFMLHI.C File Manipulation Limitation 113
The Completed DEL FEP 113

BIBLIOGRAPHY . 114

I 4 Index . 17

APPENDIX A SOFTWARE REQUIREMENTS ANALYSIS

APPENDIX B LSI FE" STRUCTURE CHARTS

APPENDIX C LSI FEP DATA DICTIONARY

APPENDIX D LSI FEP SOURCE CODE LISTINGS

.
a.

;':" vi

APPENDIX E LSI FEP MEMORY LOAD MAP (LSIFEP.MAP)

APPENDIX F LSI FEP USER'S GUIDE

APPENDIX G LSI FEP PROGRAMMER'S GUIDE

Vita . 265

VV.

ci

'pw
,o

.4

ivi
4

"" , " ; .. ' , '' , 'o , '- . . - - ' .. " . -', , ' . , % % " -, ,, " - " " " ''' ' '

List of Figures

Figures Page

* 1-1 System Physical Device Topology . 3

3-1 System Network Node Topology 4

3-2 ISO Reference Model Protocol Layers 52

3-3 Data Link Frame Header (DLFH) 57

3-4 Transport Header 62

4-1 LSlFEX Memory Layout 75

F-i DYG: Directory F- ~4

F-2 DYl: Directory F- 6

4F-3 Node Buffer Table CNBT) F- 8

F-4I Port Status Table (PST) F- 9

F-5 LSIFEP.DAT File Format F-11

G-0FCM nietCmad ie........G
G-2 'F.COM' Indirect Command File G- 6

-' List of Tables

Table Page

1-1 Designer Perspective Software Rqmnts 3

2-1 System Level Requirements 20

5-1 Test Plan Procedures and Results . . 98

viii

r::.: , : , i -.- q-* ; r . -c .C. .r 4 - -'- -U
i

:.-.- ."

SAFIT/GCS/EE/83D-13

A

A Communications Front-End Processor (FEP) was

implemented for a Digital Equipment Corporation (DEC)

VAX-11/780 using a DEC LSI-11/23 microcomputer. The

LSI-11/23 serviced eight DEC VT-100 terminals and

communicated with the VAX-11/780 over an Able Computer

Technology, Inc Direct Memory Access (DMA) interface. This

investigation proceeded from a FEP design provided in a

previous work and culminated in the Telecon 'C' compiler

language coding of those design specifications. The design

was translated into structure charts defining software

module functions and interfaces. Program Design Language

(PDL) was then used to outline the processing steps in a

" structured programming format for each software module. A

data dictionary was constructed to document the data and

functional module interfaces. The code was implemented in a

'top-down' manner.

ix

V.

*:" . - . , , -. ,.

CHAPTER 1

INTRODUCTION

1.1 Purpose -
.

. The purpose of this investigation was to design,

implement, and test software through which a Digital

Equipment Corporation (DEC) LSI-11/23 microcomputer could be

configured as a Communications Front-End Processor (FEP) for

a DEC Virtual Address Extension (VAX)-11/780 minicomputer

within the Digital Engineering Laboratory (DEL) of the Air

Force Institute of Technology (AFIT). In its FEP

configuration, the LSI-11/23 would provide an interface

between the VAX-11/780 and the terminal-related activities

of the VAX users.

The LSI-11/23 would service all VAX-bound terminal I/O

-1-, _

* %'- -

interrupts, assembling the input character-by-character

until a complete command line had been assembled. The

LSI-11/23 would then route this complete message to the

-~ VAX-11/780 via a high speed Direct Memory Access (DMA) link.

* Return traffic to the terminal would be handled in a similar

manner. The VAX response (character, line, page, or file)

would be sent along the DMA to the LSI-11/23 which would

then route it at the proper terminal speed to the user who

initiated the activity. The System Physical Device Topology

is depicted in Figure 1-1 .

1 .2 Background -

Pol

This investigation is the logical continuation and

relies heavily upon material developed in a previous effort

- [1]. This previous investigation justified the FEP project

by establishing it as a cost-effective solution to the

resource saturation problem occurring within the DEL

VAX-11/780. Resource saturation is the condition of a

computer system when it can no longer support additional

workload demands placed upon its resources [1:3).

The VAX-11/780 resource saturation condition was shown

[1:16) to consist of three components: (1) Overcrowding of

-2-

,..

7 VT-100 (expandable to 16)

Remote
Terminals
(TI thru T7)

VAX
Peripherals

T2

T3 I TiI \I I

-. \ I /

DMA Link

1 T4 - LSI-11/23 I-------------------VAX-11/780

I I

/ \ \

I"T5 \ T7

I- \

T6 \

DELNET
Serial

I Line-

Printer

Figure 1-1 System Physical Device Topology

a.

'A

-3-
o r !

.

*', W . '''L *',. - ", ',.a'. ",. f'-.-.%-'.'.f. '..' -~ . . . *'.*" .* ".* -'- -. .• .- .
... . : ' " - . -, ,,md h a ,.anmn a~ . a m .

- : -
.

- -
A-, a' a

the VAX 1/0 structure as the number of toa system users

4 . increased; (2) Increased numbers of pending 1/0 requests as

the number of cocrrn users increased; and, (3) Reduced

central memory availability brought about by the increased

number of concurrent system users. All three components

were shown [1:16-18) to be adequately addressed by the FE?

concept.

A highly comprehensive Requirements Analysis was then

developed (1:18-263 by considering (1) FE? System level

Requirements; (2) Hardware Requirements; and, (3) Software

Requirements. This latter analysis was performed from the

complimentary and increasingly implementation oriented

.5perspectives of the usr the ne~twork, and the deinr A

summary of the culminating model - the Designer Perspective

Software Sub-System Requirements - appears in this report as

Table 1-1. The complete model is reproduced [1:9'4-112) in

this report as Appendix A.

1 .3 Problem Statement -

The problem pursued during this investigation was to

design, code, test, and document the DEC LSI-11/23 portion

of the DEL FE? network.

-p4

F:: Table 1-1 Designer Perspective Software Requirements

Requirement Description
--

1 Local Computer Network
1.1 Two Processors
1.2 Communications Link
1.3 Software On Each Processor
1.3.1 Front-End Software
1.3.1.1 Support User Terminals
1.3.1.1.1 Virtual Link
1.3.1.1.2 Information Routing
1.3.1.1.3 Message Assembly/Disassembly
1.3.1.1.14 Link Assignment Strategy
1.3.1.2 Perform User Tasks
1.3.1.2.1 Operating System Tasks
1.3.1.2.2 Special Functions
1.3.1.3 Comm Link Management
1.3.1o3.1 Control Comm Link
1.3.1.3.2 Assemble Comm Link Message
1.3.1.3.3 Transmit Comm Link Message
1.3.1.3.4 Receive Comm Link Message
1.3.1.3.5 Disassemble Comm Link Message
1.3.1.3.6 Error Check Messages
1.3.2 Host Software
1.3.2.1 Support User Terminals
1.3.2.1.1 Virtual Link
1.3.2.1.2 Information Routing
1.3.2.1.3 Message Assembly/Disassembly
1.3.2.1.4 Link Assignment Strategy
1.3.2.2 Perform User Tasks
1.3.2.2.1 Operating System Tasks
1.3.2.2.2 Special Functions

". 1.3.2.3 Comm Link Management
1.3.2.3.1 Control Comm Link
1.3.2.3.2 Assemble Comm Link Message
1.3.2.3.3 Transmit Comm Link Message
1.3.2.3.4 Receive Comm Link Message
1.3.2.3.5 Disassemble Comm Link Message
1.3.2.3.6 Error Check Messages

I

m-5-

J : , = "- - - -.,.. C*. -. W * C."." -- -a

Table 1-1 Designer Perspective Software Requirements (Cont'd)

Requirement Description
--

2 Host Operating System
2.1 Multi-Programmed Environment
2.2 Mass Storage
2.3 Comm Link Support
2.4 High Level Language

3 FEP Operating System
3.1 Support for Maximum Terminal Population
3.2 Mass Storage
3.3 Comm Link Support
3.4 High Level Language

4 Consistent User Interface
4.1 Provide "Single User" Environment
4.2 Consistent With VAX/VMS Operation
4.2.1 Single-User/Host Operations
4.2.2 Control/Management Operations
4.2.2.1 Terminal CONNECT
4.2.2.2 Terminal DISCONNECT
4.2.2.3 Command Interpreter
4.3 Procedural Assistance
4.3.1 Single-User/Host Operations
4.3.2 Control/Management Operations
4.3.2.1 HELP Operation
4.4 Easy to Learn and Use
4.4.1 Control/Management Operations
4.4.1.1 HELP Operation
4.4.1.2 Terminal CONNECT
4.4.1.3 Terminal DISCONNECT
4.5 Processing Support Invisible to User
4.5.1 Single-User/Host Operations
4.5.2 Control/Management Operations

-6-

Table 1-1 Designer Perspective Software Requirements (Cont'd)

Requirement Description

5 Operating Environment Compatibility

5.1 Physical Plant Compatibility
5.1.1 Power Source
5.1.2 Temperature Range
5.1.3 Humidity Range
5.2 Academic Compatibility
5.2.1 Unattended Operation
5.2.1.1 Startup Procedure
5.2.1.2 Shutdown Procedure
5.2.1.3 Asynchronous Intermediate Processing
5.2.1.3.1 User Level Messages
5.2.1.3.2 System Level Messages
5.2.1.3.3 Queueing System
5.2.2 Support for 8 Interactive Terminals
5.2.3 Support for Line Printer
5.2.4 Support for Study of LCN
5.2.4.1 Collect Performance Data
5.2.4.1.1 System Level Status
5.2.4.1.2 Terminal Session Statistics
5.2.4.1.3 User Session Statistics
5.2.4.1.4 System Queue Statistics
5.2.4.2 File Transfer
5.2.4.2.1 Transfer To/From Host

* 5.2.4.2.2 Disk Media
5.2.4.3 Peripheral Sharing
5.2.4.3.1 Route Output To Printer
5.2.5 DELNET Integration
5.2.5.1 Single-User/DELNET Operations
5.2.5.2 Control/Management Operations

-7-

o4

. * q t f

,"f f . . .~f

rV- I.,.- -Lj ,V " ;-.0 _1

Table 1-1 Designer Perspective Software Requirements (Cont'd)

Requirement Description

6 Supportability
6.1 In-House Maintenance
6.1.1 Hardware
6.1.2 Software
6.2 Expansion
6.2.1 Modular Software
6.2.1.1 Functions
6.2.1.2 Functionally Cohesive

6.2.1.3 Hierarchical Structure
6.2.1.4 Loosely Coupled
6.2.2 Physical Configuration

6.2.2.1 Terminals
6.2.2.2 Processors
6.2.2.3 Comm Links

6.2.3 Inspect Configuration

6.2.4 Modify Configuration

7 Minimum Cost
7.1 On-hand Components

8 Data Security
8.1 No Requirement

Vo

i

-o8
'o

,

*-o *,O*'. g~~'U
.

1 .4 Scope-

This effort was limited to implementing the LSI-11/23

*portion of the FEP for several reasons, among which -- time

constraints, the level of software risk, and an expanding

VAX configuration -- were the most crucial.

It was recognized early that the FE? system would have

to operate effectively and dependably in a heavy-use

environment. Therefore, careful design, "flawless" coding,

and meticulous testing were mandated from the onset to

ensure a reliable product. To successfully implement the

* FEP, a thorough understanding would have to be gained of the

VAX/VMS operating system - its services and interfaces as

S well as its capabilities and limitations. A similarly

thorough understanding would be required of the LSI-11/RT-11

operating system. Furthermore, the nature of the DMA link

would have to be thoroughly understood. As time passed, it

became clear that the pursuit of this thorough understanding

for just one of the computers could well occupy the

productive efforts of one MS thesis investigation.

Software risk is a measure (not always quantifiable) of

the possible exposure to processing corruption introduced by

newly created software. The greatest risk applies to

long-standing data bases and library files which would have

~ to be re-created from dated checkpoint files and, if

W In .V V

possible, tediously brought up-to-date by recreating the

modifications which had occurred since the last checkpoint.

The DEL VAX supports several thesis projects currently in

progress and departmental Data Base classes. Conversely,

there are no users requiring the dedicated use of the DEL

LSI-11/23. For the few users who do have occasion to use

the DEL LSI-11/23, the possiblity of cross-contamination of

user files is non-existant because each user reboots the

system at the start of a user session and physically removes

their diskettes at the termination of their session. While

. the LSI-11/23 FEP implementation bears the lesser risk, its

realization will benefit the riskier VAX implementation by

providing a driver/debugger capability during the VAX FEP

development effort.

The final major reason for targeting the LSI-11/23 as

the initial FEP implementation was the configuration

upgrades that were occurring for the VAX. These upgrades

included both hardware and software and would have

transformed what was to have been a risky software

development effort into a possible perilous effort. These

upgrades are projected to taper off with time - thereby

restoring a degree of stability to the VAX-11/780 FEP

development environment.

qQ1

,.. - 10 -

* °* - - 0 ~ ~ * * 0

1 .5 Approach-

The Software Engineering techniques that were used

throughout this effort can be classified as "top-down" and

"structured". Both of these techniques have proven to be

useful (25] during the Software Development Life Cycle of a

project. Development tools and documentation aids used

throughout this effort include "Structure Charts" (ref

Appendix B), a "Data Dictionary" (ref Appendix C),and

Program Design Language CPDL).

1.5.1 Software Development-Life Cycle -

To better control the development of a project,

software managers have identified six separate stages

through which software projects pass; these stages are

collectively called the Software Development Life Cycle

(25:198):

1. Requirements Analysis
2. Specification
3. Design
4. Coding
5. Testing
6. Operation and Maintenance

1.5.1.1 Reauirements Analysis - The Requirements Analysis

focuses on the interface between the computer, used as a

tool to solve some problem, and the people who need to use

it. A Requirements Analysis can aid in understanding both

- 11 N

the problem and the tradeoffs among conflicting constraints,

**'~ thereby contributing to the best solution [25:199).

1.5.1.2 Specification - While Requirements Analysis seeks

to determine whether to use a computer, Specification seeks

to define precisely _bh&.J the computer is to do, but not h9X

to do it. Issues that are examined at this stage include

input and output record formats, database layouts, algorithm

selections, etc [25:199).

1.5.1.3 fljsjgn - In the Design stage, the algorithms

called for in the Specifications are developed, and the

overall structure of the computer system takes shape. The

system is divided into small parts (modules) with

constraints as to function, size, and speed (25:200).

1.5.1.4 Coin - Coding is usually the easiest stage.

High-level languages and structured programming simplify the

task. In one study, Boehm [26) found that 64% of all errors

occurred in design, but only 36% in coding. Hamilton and

Zeldin (27) report that in the NASA Apollo project about 73%

of all errors were design errors. It appears that coding

has been mastered better than any other stage of software

development [25:200].

1.5.1.5 Testi~ng - The testing stage may require up to half

of the total development effort. Testing is divided into

three distinct operations: 1) "Module Testing" subjects

-12-

%.%d~~~~~~~r.C~~~~~~r~~~~v..-~~~N ..- AIN* *.*..' '** . .* ~ '4 - w ***** 4-J
4 ~ '

4
*

each module to the test data supplied by the programmer;

2) "Integration Testing" tests groups of components

together; and 3) "Systems Testing" involves the test of the

completed system by an outside group [25:200).

-1.5.1.6 Operation and Maintenance - These first five

stages, collectively forming the development activities,

* account for only 25% to 33% of the total effort required

during the life of the system [25:2011. Maintenance costs

-~ ultimately dwarf development costs.

It should be clear that each software development stage

* may influence earlier stages. The writing of specifications

gives feedback for evaluating resource requirements; the

design often reveals flaws in these specifications; coding,

testing, and operation reveal problems in design [25:202).

It should also become obvious that the particular stage

at which an error is detected directly effects the cost of

correcting that error. Modifications made to the project

have a "rippling" effect that propagates in both directioiis

from the point of change. For instance, customer

-~ dissatisfaction with a test result could evolve because the

requirements analysis did not precisely describe the

customer's desires. In effect, the wrong problem was

solved. If this flaw were discovered during the

Specification stage, the cost of modification would be

- 13 -

L.
considerably less than it is after coding has been

completed.

1.5.2 Software Engineering Technigues-

The Software Engineering Techniques used in developing

the software system included Top-Down Design, Top-Down

Development, and Structured Programming.

1.5.2.1 Top-Down Design - Top-down design is a technique

-. in which a programmer first formulates a subroutine as a

single statement, which is then expanded into one or two of

the basic control structures discussed in paragraph 1.5.2.3

(Structured Programming). At each level, the function is

expanded in increasingly greater detail until the resulting

description becomes the actual source language program.

Using this approach, also called "stepwise refinement", the

program is hierarchically structured and is described by

successive refinements [25:211).

1.5.2.2 Top-Down Develooment - This is another technique

for implementing hierarchically structured programs. Here

the top-level routines are written first, and the lower

level routines, called stubs, are written to interface with

these. The stubs return control after printing a simple

message and may return some fixed test value. The stub is

eventually replaced by the full module which would then

include calls to other stubs. In this manner, an entire

.14

* .
o

4= system can be gradually developed and tested [25:212].

1.5.2.3 Structured Programming - A major development in

facilitating the programming task is known as "structured

programming". The premise here is to use a small set of

simple control and data structures. A program then is built

by nesting these statements inside each other. This method

restricts the number of connections between program parts

and thereby improves the comprehensibility and reliability

of the program. The "if-then-else", "while-do", and

"sequence" statements are one commonly suggested set of

control statements for this type of programming [25:211].

1.5.3 Development Tools and Documentation Aids -

Three Development Tools and Documentation aids were

chosen from among the many currently available. Selection

criteria included a) clarity of presentation, b) user

familiarity, c) ease of modification, and d) availability of

A automated storage and retrieval.

Structure Charts were chosen over Structured Analysis

.* and Design Technique (SADT) diagrams because they were rated

higher in "module communication", "training need", and

"proliferation" [28:68]. Likewise, Data Dictionary entries

* -. were chosen over other database structure representation

J tools such as Data Structure Diagrams due to the higher

degree of maintainability and clarity of expression

- - 15 -

.4

[28:72-89] provided with a data dictionary. PDL

(pseudocode) was chosen to represent software behavior

instead of techniques such as flow charts to take advantage

of PDL's clarity characteristics of explicitly representing

control structure and nesting level depictions.

1.5.3.1 Structure Charts. - Structure Charts (ref

.* Appendix B) provide a visible and convenient method for

portraying the interrelationships between the individual

software modules. Hierarchical and scope of control

relationships can be easily seen. Also, parameter passing,

in the form of data and control flags, between modules can

be effectively identified.

1.5.3.2 Data Dictionary - A Data Dictionary (ref Appen.ix

C) is a document in which the namer, attributes, and

relationships of software data items and functional modules

can be described. It serves as a cross-reference locator

for the various constants, variables, and procedures

appearing throughout the source listings. The functional

module entries contain a Program Design Language (PDL)

summary of the software logic.

1.5.3.3 Proaram Design Lansuage CPDL) - PDL (ref Appendix

C) is a type of language which contains two structures:

-"outer" syntax of the basic control statements (ref para

1.5.2.3) and an "inner" syntax that corresponds to the

-16-

* ~ ~ -. 1..-

application being designed. The inner syntax is English

statement oriented, and is expanded, step by step, until it

expresses the algorithm in some programming language

[25:212].

1.6 Overview Of Thesis -

This thesis concentrates upon the software design and

implementation of a previously specified FEP [1] system.

The Requirements Analysis was accomplished in this previous

effort and is summerized in this report in Chapter 2.

Chapter 2 also describes several System Design Decisions

made during the course of this current investigation. Next,

the Network Design and Protocol Issues are discussed

(Chapter 3). The thesis continues with the Software Design

and Implementation (Chapter 4), the Software Test and

Evaluation (Chapter 5), and the Conclusion (Chapter 6).

Appendices include the Software Requirements Analysis

(Appendix A), LSI FEP Structure Charts (Appendix B), LSI FEP

Data Dictionary (Appendix C), LSI FEP Source Code Listings

(Appendix D), LSI FEP Memory Load Map (Appendix E), LSI FEP

User's Guide (Appendix F), and LSI FEP Programmer's Guide

(Appendix G).

-17-

t * * C * *,% . *

CHAPTER 2

REQUIREMENTS ANALYSIS AND DESIGN DECISIONS

In this chapter, the top level "System Level

Requirements" [1:15-26) are examined and then prioritized

for implementation. It is from this basic requirements

Odefinition and the step-wise decomposition of these

requirements that the final "Designer Perspective Software

Requirements" (Appendix A) was created. Design Decisions

and Trade-offs are then examined and justified.

This chapter also discusses the capabilities and

limitations of the L.SI-11/23 microcomputer hardware and

software in addressing the LSI FEP requirements. This

chapter (along with Chapter 3) describes the decisions made

during the first 3 Software Development Life Cycle

* C para 1.5.1 J stages (Requirements Analysis, Specification,

* and Design) of this software project.

- 18 -

2.1 System Level Requirements -

The problem previously investigated [1:51 involved

resolution of the VAX resource saturation condition. To

solve that problem, eight subordinate requirements [1:18]

were identified :

1. Local Computer Network (LCN)
2. Host (VAX) Operating System
3. FEP (LSI) Operating System
4. Consistent User Interface
5. Operating Environment Compatibility
6. Supportability
7. Minimum Cost
8. Data Security

These System Level Requirements and their decomposed

sub-groupings are discussed in the following paragraphs.

The numbers within the parentheses refer to the system

requirements depicted in Table 2-1.

2.1 .1 Local Computer Network -

The FEP topology specified a local computer network

(LCN) (1) connecting two processors (1.1) with a

communications link (1.2). Network software (1.3) would be

required for both processors [1:18-21).

2.1.2 Host Ooerating System. -

Functions required of the VAX operating system include

capabilities for supporting a multi-programmed environment

-19-

ii
, * w - * * *

Table 2-1 System Level Requirements

Requirement Description

1 Local Computer Network
1.1 Two Processors
1.2 Communications Link
1.3 Software On Each Processor

2 Host Ope-rating System
A2.1 Multi-Programmed Environment
:22.2 Mass Storage

2.3 Comm Link Support
2.4 High Level Language

3 FE? Operating System
3.1 Support for Maximum Terminal Population
3.2 Mass Storage
3.3 Comm Link Support
3.4 High Level Language

4 Consistent User Interface
4.1 Provide "Single User" Environment
4.2 Consistent With VAX/VMS Operation
'1.3 Procedural Assistance
4.4 Easy to Learn and Use
4.5 Processing Support Invisible to User

5 Operating Environment Compatibility
5.1 Physical Plant Compatibility
5.1.1 Power Source
5.1.2 Temperature Range
5.1.3 Humidity Range
5.2 Academic Compatibility
5.2.1 Unattended Operation

A5.2.2 Support for 7 Interactive Terminals
5.2.3 Support for Line Printer
5.2.4 Support for Study of LCN
5.2.5 DELNET Integration

6 Supportability
6.1 In-House Maintenance
6.2 Expansion
6.2.1 Modular Software
6.2.2 Physical Configuration

7 Minimum Cost
7.1 On-hand Components

*- -20-

(2.1), at least one mass storage device (2.2), the DMA comm

link (2.3), and the high level language (2.4) selected for

the software implementation [1:21-22].

2.1.3 FEP Onerating System. -

Functions required of the LSI operating system include

capabilities for supporting a multi-terminal environment

(3.1), at least one mass storage device (3.2), the DMA comm

link (3.3), and the high level language (3.4) selected for

the software implementation [1:22-23].

2.1.4 Consistent User Interface. -

This requirement serves to minimize the amount of

"re-learning" required by the VAX user to access the VAX

" - through the LSI FEP. Specific functions include providing

all concurrent users with the full spectrum of VAX

* capabilities available to a single user (4.1) connected

directly to the VAX. Furthermore, any special procedures

necessary to operate the FEP system must be consistent with

the VAX/VMS functional interface (4.2), and a method of

obtaining assistance (4.3) on the procedures should be

provided. Finally, the user interface must- be easy to learn

and use (4.4) and the processing necessary to support it

should be virtually invisible (4.5) to the user [1:23).

-21-

2.1.5 Onerating Environment Comoatability. -

Physical plant compatability (5.1) requires the FEP to

function within the power (5.1.1), temperature (5.1.2), and

humidity (5.1.3) ranges existing within the DEL. Academic

compatability (5.2) requires the FEP to run unattended

(5.2.1) while supporting eight (expandable to 16)

concurrent, interactive user terminals (5.2.2) and at least

one line printer (5.2.3). As a teaching tool, the FEP

should support the study of the LCN environment (5.2.4).

,s. Finally, the FEP must be capable of full integration (5.2.5)

into the Digital Engineering Laboratory Network (DELNET)

[1:241.

2.1.6 Suoportability. -

In-house maintenance (6.1), using DEL resources, is

required for hardware and software components. Potential

system expansion (6.2) of the physical configuration (6.2.1)

as well as individual software modules (6.2.2) requires the

flexibility provided by current software engineering

practices [1:24-25].

2.1.7 Minimum Cost. -

This requirement implies the selection, whenever

possible, of network hardware/software components already

on-hand (7.1) or readily available to the DEL [1:25].

22

V% " " "" • " . - *'-* -"-*-.-.-. ,'.." ." * .'..'.. . ..- '. .. - . ., . .

A~~~~~~~~~ . .* **. * .. * .2-* .

2.1 .8 Data Security,

N1:5o specific requirement: were listed under this topic

[1:21. urthrmoe, snceVAX processing of classified

information was not expected to occur, then this System

Level Requirement (Requirement 8 in Table 1) was eliminated

from Table 2-1.

2.2 Requirements Prioritization -

The possibility of not implementing the entire FEP

system during the course of one thesis effort was recognized

as a highly probable event. Therefore, a priority ranking

of the System Level Requirements was accomplished to

A- establish an implementation ordering. This section contains

these priority decisions which directly drove the software

design and coding efforts.

Those requirements which were constraints included:

a. Most of the Local Computer Network (1) --- the lone
exception being the degree of sophistication of the

* . Software on Each Processor (1.3),

b. The Physical Plant Compatability (5.1) portion of
the Operating Environment Compatability (5),

c. The In-House Maintenance (6.1) portion of
Supportability (6),

k -23 -

d. The Minimum Cost (7).

Other requirements identified capabilities already in

existance within the VAX/VMS and LSI/RT-11 operating

systems. These included:

.' a. The Host Operating System (2)

.x b. The FEP Operating System (3)

These observations left the following areas in which

prioritization ranking could occur:

a. The Software on Each Processor (1.3) portion of
Local Computer Network (1),

b. Consistent User Interface (4),

c. The Academic Compatability (5.2) portion of
Operating Environment Compatability (5),

d. The Expansion (6.2) portion of Supportability (6).

2.2.1 Tot Priority. -

The first priority decision made was in the area of

Processor Software (1.3). It was decided to concentrate the

efforts of this thesis on implementing the LSI portion of

the FEP system requirements (ref para 1.4). Host network

software would be limited to a driver/debugger application

program to manage the DMA traffic at the VAX end of the

communications link. This program would initiate DMA

,%

.
*55

oh7

transfers, respond to incoming comm link traffic, and

* *.4 display the comm link traffic upon a VT-100 interactive

terminal.

2.2.2 High Priority. -

Certain requirements were viewed as absolutely

necessary --- either from a network point-of-view or from an

operator point-of-view. Requirements designated as

essential fell into one of two categories :

a. If the requirement was a specific function, then it
was implemented before any lower priority function,

b. If the requirement described a design strategy,
then it served as a design guideline and molded
follow-on design decisions.

430 Requirements identified as high priority include:

2.2.2.1 Provide Single-User Environment. - Of all the

System Level Requirements, this one most closely relates to

the overall reason for the FEP concept --- namely to solve

* the VAX resource saturation problem. This requirement

basically means that each concurrent user will experience an

environment in which they could imagine that they were the

sle user connected directly to the VAX. Implied within

this definition are several important concepts:

A. Reliable Terminal/Process linkage in both
directions. This requires the FEP software to
communicate the terminal requests to the proper

-25 -

% W
. . .

o ** . S *

process executing on the host and to return the
proper, uncontaminated response from the host to

. the appropriate terminal.

B. Terminal response delay should not be noticably
longer during FEP operations than the delay which
could reasonably be expected to occur during
single-user operation. This requires fast
executing code and rapid movement of data.

C. The full repertoire of VAX/VMS commands must be
available to each concurrent user without addingany FEP-unique command overhead to his use of the
FEP. This implies a processing transparency

requirement for the LSI FEP software.

2.2.2.2 Consistent With VAX/VMS Operation. - This function

implies that all services normally provided by the host's

terminal device drivers must now be provided within the LSI

FEP so that the VAX/VMS would be presented with a Consistent

User Interface.

2.2.2.3 Unattended Operation - Since the host VAX

4 operates in an unattended configuration, its LSI FEP

extension should be designed to not require any additional

manning overhead.
-'a

2.2.2.4 Suport for 7 Interactive Terminals. - Support for

8 Interactive Terminals (ref para 2.1.5) could not be met

due to system limitations. The LSI-11/23 hardware

components reside within a Plessey Peripheral Systems

. MICRO-II based computer system [2:1-3). The Plessey

PM-MFV11A Multifunction board provides four Electronic

Industry Association (EIA) RS232 ports which may be used for

- 26 -

9j, .'. 4 % 4. -' ..~.\ * ~ ** , ' -..-. - a . . .,'.-. * . .o.'.-..,

console device interface, printer, modem, or spare terminals

[3:1-1]. Port 1 is permanently assigned to the console,

leaving only 3 ports on the PM-MFV11A card for spare

terminals. A DLV11-J card was inserted into the LSI-11 bus

to provide 4 additional asjnchronous serial interfaces

(ports) to the FEP. These two cards provide a total of only

7 (not 8) interactive terminal interfaces. Therefore,

requirement 5.2.2 (Table 2-1) was changed to reflect the

current physical limitation of Support for 7 Interactive

Terminals.

[NOTE: Although not designed for this
purpose, the console can be used as the eighth
terminal and software support for this
contingency was written. However, all LSI FEP
system error and status messages will be output
to the console screen. This could become quite
annoying to an interactive user stationed at
this console.]

2.2.3 Medium Priority. -

Assigned to this category were functions which were

desirable for early implementation, but not required for the

basic FEP to operate. These functions could have been

deferred for implementation in a follow-on thesis

investigation if time ran out during the current thesis

effort. Medium priority functions include:

-27-

2.2-3.1 Easy to Learn and Use. -This function specifies

that the user not be burdened with additional operating

overhead in order to communicate his requests to the VAX.

This requirement is consistent with the high priority

requirement to Provide a "single-user" Environment (ref

para 2.2.2.1). With the successful implementation of this

high priority requirement, it is expected that a minimum

operating overhead will fall out as an inevitable

by-product.

2.2.3.2 Processing Support Invisible to the User.. - This

requirement specifies that the user need not know where,

Nwithin the network, his requests are processed. It is

absolutely transparent (and of no importance) to him that

terminal device driver/interrupt service functions, for

example, have been removed from the VAX processor to the

LSI-11/23 processor. As with the previous medium priority

requirement, it is expected that Invisible Support to the

User will be satisfied during implementation of the high

priority Provide a "Single-User" Environment requirement.

2.2.3.3 Support for LCN Study - This requirement specifies

the periodic trapping of system queueing data for later,

off-line reduction and analysis. Although providing a

significant opportunity to monitor network status in a

dynamic environment, this requirement's implementation is

not essential for the FEP system to function.

-28-

2.2.3 " £znsjon~. -This requirement, which is decomposed

intc Modular Software and Physical Configuration specifies a

flexible implementation which would easily accomodate system

modifications such as the addition of more terminals or

software function/subroutines. This requirement was

assigned a medium priority primarily because it's

implementation conflicts, at times, with that of the higher

priority requirements. For instance, modular software

engineering practices encourage a minimum of data-structure

sharing between software modules. This concept requires

each module to define the data items and structures that

will be required during its execution. On the LSI-11/23

these locally defined data items are created each time the

subroutine is called and destroyed each time the subroutine

exits. Although well-designed from a software engineering

perspective, this repeated creation and destruction of the

same data definitions is counter-productive in a real-time,

interrupt-driven application. The additional processing

overhead required to isolate modular data creates an

unacceptable delay in the network processing, especially

those functions that service interrupts. For these reasons,

the Expansion requirement has been assigned a medium

priority so that implementation conflicts may be resolved in

favor of the higher priority tasks.

-29

W W

2.2.4 Low Priority. -

Requirements assigned in this category include those

which are desirable, but less important than even the medium

priority tasks. Included within this category are:

2.2.4.1 Procedural Assistance. - This function specifies

the need for "HELP" commands to be made available for the

user to operate the network. It is envisioned that, if the

requirements for "Single-User" Environment (ref para

2.2.2.1) and Easy to Learn and Use (ref para 2.2.3.1)

have been properly implemented, then the requirement for a

"HELP" file will be near non-existent. Therefore, a

decision as to the need for its implementation should be

deferred until after the other two requirements have been

0implemented.

2.2.4.2 SuDort for On-Line Printer. - This requirement,

part of the original network design [1:35], specified a

serial line printer to be connected to the LSI. However,

the current effort is directed at implementing the basic FEP

system and then enhancing it as resources permit. Under

this concept, moving the printer from the VAX to the LSI

* becomes an enhancement rather than a high priority

requirement. The driving goal during the early

implementation stages is to free the VAX of the interactive

I/O overhead by relocating the terminal device

30

¢ -.- . v .%;. °.;......2 ..)2.- :. - 22..-3 0 - . ." ? -.. =

driver/interrupt routines to the LSI. To move the printer

• - functions concurrently would be to expose the initial FEP

implementation to a higher risk factor than is clearly

warranted at this early stage. Delaying the printer

relocation will also simplify the test and evaluation stage

of the initial implementation.

.1N 2.2.4.3 DELNET Integration. - This function pre- supposes

the existance of the DELNET. Pending the implementation of

the DELNET, this requirement will be assigned a low priority

status.

2.3 Design Decisions And Tradeoffs -

Several situations requiring major design decision

trade-offs were encountered during this investigation.

These were considered "major" design decision trade-offs

because their resolution affected and guided further design

-. -issues. Throughout the FEP effort, additional "minor"

trade-off decisions were made which influenced the

-implementation of specific functions (i.e. size of buffers

and headers, etc.). Discussion of these "minor" issues is

deferred until the functions themselves are discussed.

These "major" issues are discussed in the following

paragraphs.

-31 -

. -- = -• • o • % " . . .*"•"•","•°-"o"•"•",°-•'. . °" - , , " o .- ° . " o 4

2.3.1 Execution Speed vs Program Size. -

This is a familiar trade-off decision often faced by

the application programmer. In most applications, a program

can be made to execute faster only at the expense of

increased memory requirements. Likewise, memory may often

be saved by recoding the program to execute slower. Rarely

will a programmer be able to concurrently optimize both

program parameters.

The FEP system is no different than most real-time

applications. It was expected to function in a dynamic

environment, servicing a variable number of randomly

arriving "bursty" terminal requests. This environment would

be best served with a fast executing program which would

O minimize the chance for FEP saturation (and its resulting

loss of data) when the system was pushed to its maximum

activity levels.

Supporting this "speed" over "size" decision was the

availability of the RT-11 Extended Memory (XM) Monitor

[7:4.1]. The XM monitor provides a usable memory capacity

four times that of the standard RT-11 Single Job (SJ)

Monitor (7:4.6]. Paragraph 2.3.7 describes how the RT-11

monitor was to be utilized.

-32-

: ,." ' ;;i' ,? ;,; .: .''; /.';;.,..' . i.[.-. -.-. :.;-.;.".;...'.-..'-..- '-'.;, -2. -J'

r 2.3.2 Interrupt Structuring.-

It was recognized early that all incoming data traffic

to the LSI-11/23 would have to be serviced by honoring an

1/O interrupt. This was required because the LSI uses a

single memory location, the Receive Data Buffer (RBUF), for

receipt of character data. Ensuing characters will

over-write the previous character regardless of whether that

previous character has, been retrieved by an application or

systems program. If the RBUF for each terminal was serviced

synchronously, then valuable processing time could be wasted

checking ports at which no new data had arrived since the

prior servicing.

On the other hand, interrupt-driven Input servers would

only execute when needed and could be constructed to contain

the minimum amount of processing needed to fetch the

character, store it away, and perform mimimal immediate

response for a select subset (i.e. --- backspace, carriage

return, control-C, etc.) of the possible character set.

Similar reasoning would seem to have advocated an

interrupt-driven output server as well. However, three

important considerations suggested synchronous servicing of

output character traffic as a better approach.

a. Although the receipt of input data was random in
nature, the output of data traffic would be totally

4 under program control.

-33-

b. Like the RBUF, the Transmit Data Buffer (XBUF)
-. could be overwritten with ensuing characters if the
.~ ~-serial interface was not provided a sufficient time

-interval during which it could transfer the
previous character.

c. It was considered highly likely that incoming data
interrupts could occur while the LSI was busy
executing an output interrupt routine.

This last concern presented two possible treatments:

a. Disable interrupts while processing an interrupt.

b. Allow nesting of interrupts.

Both approaches presented drawbacks. Locking out

interrupts would present a high probability for lost data

because the REUF of a fast keyboard typist could be

0 overwritten before the LSI was notified of a new character's

presence there. Nesting of interrupts would slow down the

processing due to the overhead involved in storing and

retrieving register information required for the orderly

resumption of an interrupted routine. Nesting of interrupts

-. would also require the additional overhead of designing,

coding, and testing re-entrant subroutines.

Both of these problems can be avoided by implementing a

synchronous servicing discipline for outbound characters

from the LSI. A polling method could be implemented in

which the Transmit Ready bit in the Transmitter Control and

Status Register (XCSR) would be interrogated prior to the

- 314 -

-I--~~ - ; - --

program moving the next character into the XBUF. This bit

r~p is set by the hardware when the serial interface is ready to

accept the next character [20:507J. Usually, polling would

consist of the software executing a tight loop until the bit

Was set. For the FEP system, any loop idling for indefinite

time durations would have to be minimized. Conveniently,

however, at least one indefinite loop is mandated for the

system. This loop is the large idle-loop that encompasses

all non-interrupt processing functions. This loop will be

entered after system initialization and iterate continuously

- until the system is terminated. The polling routines were

selected for inclusion within this large loop.

If the Transmit Ready bit in XCSR was set when checked,

O then the next output character would be moved to XBUF. If

the bit were not set, then the next synchronous task would

N be executed and a recheck of XCSR would be delayed until the

next pass through the loop. Since most iterations of the

large loop would not find new work, it was projected that

this scheme would introduce very little additional delay in

the movement of output characters to the target device. On

the other hand, all XCSR/XBUF pairs could be interrogated

within the same loop, thus economizing the wait process when

output data was available for more than one device.

-35 -

2.3.3 Device Handlers vs. Interrupt Service Routines.

Device Handlers (drivers) are routines that provide the

interface to the computer hardware devices. The handlers

- . drive, or service, peripheral devices and manage information

transfer between memory and the devices [7:2.19]. Device

handlers are usually stand-alone programs which must be

•N .loaded into physical memory before they can be used. An

interrupt service routine, on the other hand, is coded as an

integral part of the application program. This routine is

called by the main program to initiate an I/O transfer. The

routine then returns execution control back to the

application program until the transfer is complete --- at

which time the device issues an interrupt. This interrupt

forces a transfer of execution control back to the interrupt

service routine which can then take appropriate action

* (restart the I/O transfer, return to the program, or

possibly retry the transfer in case of an error) [7:6.2].

The major advantages in using Device Drivers are that they:

A. Provide device independence for the application

program

B. Can share processor time with other processes

C. Are simple to use

The major advantages in using In-line Interrupt Service

-36

, .-.. %?* . R % * * r.* .;'

* Routines are

A. Their speed of execution

B. The amount of control information they provide

Device independence was never a design consideration

because DEC VT-1001s were specified [1:34] as the

interactive terminal devices. Since no other process was

- expected to be simultaneously executing on the LSI-11/23,

there was no requirement to ensure process-sharing of

resources. Simplicity of use was not, by itself, sufficient

justification for using Device Drivers. On the other hand,

speed of execution was a critical component for real-time

applications and supported the high priority requirement to

"Provide a 'Single-User' Environment" discussed previously

(ref para 2.2.2.1.B). Providing additional control

information was a benefit whose implementation cost was

negligible. Therefore, the third "major" design decision

was to implement In-Line Interrupt Service Routines rather

that Device Handlers.

2.3.4 Device Priority. -

Specifying the device priorities amounts to determining

the servicing order when simultaneous interrupts occur.

Although the LSI-11/23 allows four interrupt levels, it was

decided not to utilize this feature due to the interrupt

*nesting problems that could occur [20:178-180 and

V 37

para 2.3.2 1. Instead, device card placement on the LSI

.: UNIBUS would be used to enforce device priority. When

devices of equal priority level request an interrupt,

priority is given to the device electrically closest to the

-' processor [20:350]. Since the overall goal of the FEP is to

reduce the VAX workload, then DMA traffic could not be

allowed to back-up within the host. Therefore, the DMA

" device was selected as the highest priority device, the

terminals next, and the System Operator Console (SOC) last.

However, system constraints prevented this exact

ordering from being implemented. The UNIBUS is contained

within the Plessey chassis. The Plessey orders the

priorities of the 9-slot UNIBUS backplane slightly

4, differently. The PM-MFV11A multifunction board is allocated

first priority before any other cards. This means that the

System Operator's Console (SOC) port and the other 3 serial

I/O ports on that card will have a higher interrupt priority

than the DMA card. The 4 port serial I/O interface card,

DLV11-J, will still be inserted further away from the

processor than the DMA card. Those software functions whose

servicing order is arbitrary will be coded to discriminate

in favor of rapid movement of DMA traffic. (These and other

items of Software Design are discussed in Chapter 4).

"" --"38

2.3.5 Virtual Mapping vs. Privileged Mapoing.-

Mapping is the process of associating Virtual Addresses

-~ with Physical memory locations [7:4.18). A Virtual Address

is a value in the range of 0 through 177777 (octal). It is

a 16-bit address within a program's 32K-word address space

--created at assembly time and modified during the linking

process. A Physical Address is the actual hardware address

of a specific memory location. In the RT-11 Extended Memory

(XM) environment, Physical Addresses lie in the range 0

through 777777 (octal) because the XM Memory Management Unit

(MMU) appends two additional high order bits to the 16-bit

Virtual Address to create a Physical Address space of 128K

words.

Virtual Mapped jobs load into memory at offset 500

(octal) from the start of the user address space [7:4.26].

Since all jobs can only access memory addresses within their

user address space, virtual jobs cannot access addresses 0

through 477 (octal). Privilege Mapped jobs load into memory

at offset 0 and can access all of memory [7:4.27). Physical

Addresses 60 through 477 (octal) are used by the RT-11

monitor for interrupt vector linkages. These vectors are

loaded with the addresses of the interrupt service routines

which are to assume execution control upon device issuance

of an 1/0 interrupt.

-39-

-. , . -.. .- -L . * . -. . ." - _ -

Since a previous design decision (ref para 2.3.3)

indicated the preference for In-line Interrupt Service

Routines over Device Handlers, it becomes necessary to be

able to access these interrupt vectors and load them with

vector information. Since Virtual Mapping cannot access

these locations, Privileged Mapping is required.

A memory load map of the final LSIFEP program mapping

is included as Appendix E.

2.3.6 Processor Transition to System State. -

The XM monitor can support multiple programs, although

only one can be actively using the processor at any given

-time. The non-active jobs may have been placed in their

G current wait state for various reasons: blocked awaiting

I/O completion, pre-empted by a higher priority job,

hybernating for a pre-determined period, etc.

When the RT-11 scheduler commands the processor to run

a different job, the monitor executes a Context Switch
5

'a [7:3.23]. Context switching is the procedure through which

the monitor save's a job's context - its machine environment

and important job-specific information - and begins

execution of another job.

The following information is saved in a context switch

[7:3.29]:

S- 40-

a. Processor Status Word (PS)

b. Program Counter (PC)

c. Stack Pointer (SP)

d. Registers RO through R5

e. Kernal Page Address Register #1 (PARi)

f. Memory Management fault trap vector

g. Break Point Trap (EPT) vector

h. Input/Output Trap (IOT) vector

i. TRAP vector

J. System Communication Area (locations 40-52)

k. Floating Point Processor (FPP) registers

1. FPP status word

m. Stack

n. Impure data area

Applications programs execute in User State, during

which time Context Switching is enabled. However, the

monitor forces a transition to System State whenever it

determines that a potential Context Switch must be delayed.

Typically, these situations occur when the monitor is

executing and is modifying important data structures. The

System State ensures that no other application program can

interrupt the monitor, gain execution control of the

processor, and contaminate the data structure modification

process before it has completed (7:3.24).

- 41 -

Any 1/O interrupt issued while the system is in System

State will be delayed until User State is re-entered. This

could present serious consequences for the FEP system. The

VAX-to-LSI DMA transfer would function as a high bandwidth

input from an independent source. It is conceivable that

data could be lost and error conditions not be recognized

immediately if these interrupts are delayed for too great a

period of time. For this reason, it is imperative to limit

the number of transitions to System State as well as the

duration of those System State processes which come under

* programmer control. These include certain types of I/0

transfers, programmed requests (.PROTECT, .CHCOPY, .INTEN,

etc.), and XM mapping requests issued from within the

program (7:3.24).

2.3.7 RT-11 Extended Memory (XM) Utilization. -

Low Memory is the physical memory between 0 and 28K

*words (addresses 0 to 177777). Extended Memory is the

physical memory above the 28K word boundary (addresses

200000 to 757777) (7:4.1). The topmost 4K words (addresses

760000 to 777777) form the I/0 Page and are reserved by the

operating system for register usage and I/O transactions.

Portions of the FE? software reside in Low Memory along with

all of the RT-11 XM Monitor software. Other portions of the

* FE? software are mapped to Extended Memory with the aid of

the Memory Management Unit (MMU) [7:4.8).

a' *V~a - 42 -

N.

There are two ways [7:4I.41f to map portions of a program

to Extended Memory. One is by issuing XM programmed

requests from within the program itself. The other way is

to generate the entire executable program image at link time

by explicitly directing the linker to map specific segments

to Low Memory and others to Extended Memory (9:11.4~1. This

latter approach was selected because it allowed more

flexibility and speed of change when such changes were

required in the mapping assignments. Furthermore, this

decision supports the need to limit the number of programmed

requests Cref para 2.3.6)issued by the LSI FE?

application software.

Certain constraints are forced upon the mapping process

by the LSI hardware and software architectures 17:4.81:

a. Interrupt service routines must be located entirely
within the low 28K words of memory.

b. Interrupt service routines must neither reside in
nor reference addresses within the range of 20000
through 37777.

With these restrictions in mind, all software

processing logic for the LSI FE? was intended to reside in

Low Memory. All buffers of significant size would have been

allocated to Extended Memory. This isolation of data from

instructions would have allowed independent "tweaking" of

either without causing massive readjustments in the other to

43

-*accomodate techange.

However, during early implementation and testing,

another (undocumented) constraint was discovered which

precluded this assignment scheme. Apparently, in addition

to residing entirely within low memory, an inter rupt service

routine can only reference data locations within lower

memory. Attempts to write to buffer areas in extended

memory from within low memory interrupt service routines

resulted in low memory instructions being overwritten with

data.

* Since these buffer areas had to be allocated to low

memory, a real dilemma developed as to exactly which program

functions could be removed to extended memory. The final

4 discriminant was whether the function could potentially be

P called by an interrupt service routine. The eventual memory

assignment strategy is discussed in Chapter 4.

2.3.8 High Level Language Selection. -

Two high level languages were implemented for use on

the LSI-11/23 in the DEL: NES Pascal and TELECON ICI. One

inherent limitation with Pascal is that address selection is

accomplished by defining pointers over whiose values the

programmer had no control. Also, the setting of interrupt

vectors would be impossible in NBS Pascal because the

address of the vector could not be specified by the

S414 -

programmer. A third NBS Pascal limitation is that the

address of a subroutine could not be fetched or moved.

These limitations could be circumvented by implementing

these critical functions at the assembly language level, but

this approach would detract from the high maintainability

and expandability requirements already specified (ref para

2.1.6). The 'C' programming language [21, 22) possessed

none of these limitations. Therefore, it was chosen as the

* implementaion language for the LSI FEP.

Although another 'C' compiler product was available

from Whitesmiths [29, 30], it had not been received by the

DEL prior to the implementation phase of this investigation.

For this reason, the Telecon 'C' compiler was chosen for

source program compilation.

2.4 Summary -

This chapter described the system level requirements

-a. for the LSI FEP. It then prioritized these requirements to

facilitate an orderly design and coding phase. These

priority categories included top priority, high priority,

medium priority, and low priority. The chapter concluded

- with an examination of the design decisions and trade-offs

-45-
a,

• .. _ -.. a..,* *.

. . % .- .-..- .'. ,. . .. *• * ,. .- -. '%, .. . m.. " " " ' V j .,, '

which occurred due to conflicting constraints and LSI-11/23

- *. capability (or inability) to adequately address the system

requi rements.

44

CHAPTER3

NETWORK DESIGN AND PROTOCOL ISSUES

This chapter describes the design of the communication

network. In order to clarify and resolve the network

issues, the system topology will be studied from a network

node perspective rather than from the physical device

perspective of Figure 1-1. These issues are discussed in

terms of physical and logical nodes, which are defined and

then identified. The chapter then continues with a

presentation of the protocol requirements at the various

network layers. The FEP System Network Node Topology is

contained in Figure 3-1.

3.1 Logically Connected Nodes-

This type of node represents a software module which

executes as an autonomous, specialized function within the

- 47 -

%~t~4~ a~~ %* % .. '.. . ~ ~ * s

Ii

SOC I SOC.I II I

"T-I -- I

iL" T2

,%:

T3 I

DMA
T4 ...---- ,

I. I I

T5 -P

'P2

I I I I IP2

" T6-'

' T7 --I-- •

I I,
I, a a I

'SLP--I .Pn

•I.IIIII
I'"I

, ,LSI- 11/23 VAX-I11/780

SNODES: I LSI System Manager (LSM)

I I

2. LSI Terminal Manager (LTM)
3. LSI Link Manager (LLM)
4. LSI Printer Manager (LPM)
5. VAX Link Manager (VLM)

6. VAX Process Manager (VPM)
"7. VAX System Manager (VSM)

i!Figure 3-1 System Network Node Topology

!48

I T--- I I f: I ' - i ' I <• , i

network. Data is moved between logical nodes using a packet

" ' switched [5:116) concept. Seven nodes were identified:

3.1.1 LSI System Manager (LSM) -

LSM Executes the interrupt routines and other functions

to manage the LSI System Operatort s Console (SOC) through

which is exercised operator control over the LSI system.

The LSM controls the SOC/LSI interface.

3.1.2 LSI Terminal Manager (LTM) -

LTM Executes the interrupt routines and other functions

to manage the seven User Terminals (TI - T7). The LTM

controls the TTx/LSI interface.

0 3.1.3 LSI Link Manager (LLM) -

LLM Executes the interrupt routines and other functions

to manage the LSI end of the LSI/VAX interface.

3.1.4 LSI Printer Manager (LPM) -

LPM Executes the interrupt routines and other functions

to manage the LSI Serial Line Printer (SLP). The LPM

controls the SLP/LSI interface.

4

1-

3.1.5 VAX Link Manager (VLM) -

VLM Executes the interrupt routines and other functions

to manage the VAX end of the LSI/VAX interface.

3.1.6 VAX Process Manager (VPM) -

VPM Executes all functions required to interface

DMA-delivered traffic with the VAX/VMS Process Management,

Memory Management, and other system functions. The VPM is

the only logical node which does not service an I/O device.

3.1.7 VAX System Manager (VSM) -

VSM Executes the interrupt routines and other functions

.7 to manage the VAX System Operator's Console (SOC) through

which is exercised operator control over the VAX system.

The VSM controls the SOC/VAX interface.

3.2 Physically Connected Nodes -

Physically connected nodes are logical nodes which are

connected to each other by means of a physical data link of

some type. The possible data links include: a) Serial; b)

Parallel; and c) DMA links. No requirements have been

defined for parallel data transfers within the FEP system.

- 50 -

d# ' , . -"."."""" . . " . . '..m
o

. q ," " . " """'#""# ,'.. . .. w % .

The physical data paths within the FEP system include:

a) Peripheral/LSI interface; b) LSI/VAX interface; and c)

Peripheral/VAX interface. Of these three, only the LSI/VAX

interface connects logical nodes (LLM and VLM) at both ends.

Therefore, these two nodes are the only physically connected

nodes in the system.

3.3 Protocol Layers -

The discussion of protocol layers begins at the lowest

(Physical) level and progresses upward using the ISO

Reference Model [5:15]. This model is included as Figure

rJ 3-2. The network issues at each level are examined and

" applied to the FEP/VAX environment.

3.3.1 Physical (Layer 1) -

Issues normally addressed at the Physical level include

Multiplexing [5:103], Terminal Concentration [5:122], Packet

Assembly/Disassembly [5:122], and Error Control [5:125-132).

3.3.1.1 Terminal MultiDlexinj - Terminal Multiplexing

involves using a device (terminal controller) that accepts

input from a collection of lines in some static,

predetermined sequence and outputs the data onto a single

output line (the DMA link) in the same sequence. Each

-51-

S .% '. * * % %, p / " -. " >\ " - " - :"--

Lae 7 Application. highestr

Laye 6 Preenttio

Lae 5Ssso

Lae 4, Trnpr

Laye 3Iewr

Lae 2 aaLn

Lae Phscllws

Fiur 3- SIeeec oe rtclLyr

I 52

CI.A.

terminal device is assigned a time slot in which only its

. traffic may be transmitted along the output line. This

output line must have the same transmission capacity as the

- sum of the input line capacities because each terminal may

-i have data to transmit when its time slot is serviced. When

a terminal has no data to transmit, the output line

transmits dummy fill characters during that terminal's time

slot.

The big disadvantage of Time Division Multiplexing

-C (TDM) is that when a terminal has no traffic, then its time

slot is wasted. It is not possible to simply fill in the

unused time slot with data from another terminal because

both sender and receiver are synchronized as to when a

specific terminal's time slot occurs. No mechanism exists

to key the receiver that the agreed upon position sequencing

*i of terminals has changed without resynching the two ends.

If each terminal has traffic only a small fraction of the

time, then TDM makes inefficient use of the output line

capacity [5:121].

3.3.1.2 Terminal Concentration - When the actual traffic

is far below the potential traffic, most of the time slots

on the output line are wasted. Consequently, it is often

possible to use an output line whose transmission capacity

is less than the sum of the input line capacities. This

arrangement is called Concentration. The usual approach is

53

' 'I . ,' ¢ , " ' ' ' ' . . - . - . ' - , , ' " ' " " . ' , , ' ' . - . - " 2 ' ' . . ' " " " . " . " " . . " " ' '

data '1 K"N characters. 7 7

to only transmit actual daeand nlot dummy fil haates

E::: 2~ However, this strategy introduces two new problems.

The first problem is keying the receiver as to which

characters came from which input line [5:122). To solve

this problem, the string of characters from each terminal is

* arranged into a message to which is appended a message

header prior to its release to the output line. This

message header contains (among other fields) the terminal

identification of the sender.

'"he other problem is tied to the smaller line capacity

of the output line. If each terminal suddenly starts

outputting data at its maximum rate, inadequate output line

- capacity exists to handle the deluge and some data may be

* lost. For this reason, concentrators are always provided

with extra data buffers in order to survive short data

-: surges [5:122). The more memory (larger the buffers) that a

concentrator has, the more it costs, but the more likely it

is to survive the short data surges. Choosing the

appropriate parameters for output line bandwidth and

concentrator memory size involves trade-offs. If either is

too small, data may be lost. If either is too large, then

the entire arrangement may be unnecessarily expensive.

Furthermore, the optimum choices depend upon the traffic

statistics, which are not always known at system design time

[5:122).

.514.

-7 a I'-

The FEP system will provide Terminal Concentration at

" 'the LTM node by merging the asynchronous serial inputs from

the seven user terminals into a single data flow to the LLM

node. Although traffic statistics are not known at this
time, the DMA transmission rate is known to be as high as

125000 words per second up to lengths of 50 feet [18:2.1).

3.3.1.3 Packet Assembly/Disassembly - Packet

Assembly/Disassembly (PAD) was renamed Command Completion

Sensing PAD and is deferred treatment until the Transport

Layer Protocol discussion (paragraph 3.3.4.6).

3.3.1.4 Error Control - Most Error Control at the Physical

level is realized in hardware. Since plans do not exist to

add hardware components, Error Control will be deferred

S treatment until the Data Link Layer discussion (ref para

3.3.2.1).

3.3.2 Data Link (Layer 2) -

Typical issues at this level include Frame Control

[5:137], Buffering and Flow Control [5:143], Sequence

Numbering [5:146], and Error Control [5:164). The only

node-to-node path along which data transverses a physical

Vdata link is at the LLM/VLM interface. Therefore, the data

link protocol will only apply to that interface. The

primary network effect characterizing this level is the

electrical noise in the physical medium. Resolution of

• * . - 55 -

, I-, . . .- - , , . - .- - . , . -. ..d-

several Data Link issues normally requires the construction

of a Data Link Frame Header (DLFH). Figure 3-3 contains the

format for the FEP DLFH.

3.3.2.1 Error Control - Error Control, deferred from the

Physical level (para 3.3-3.4), is provided by placing a

checksum within the Data Link Frame Header (DLFH). The

receiving node verifies this checksum with an independent

one which it calculates itself. If the checksums verify,

then the receive node "piggy-backs" an acknowledgement (ACK)

back to the sending node in the DLFH of the next reverse

direction message frame. If reverse traffic does not occur

prior to a timeout period, then the ACK is sent as a newa.

44

packet. If the checksums do not verify, then an immediate

43 NAK is sent to the sender who responds by retransmitting the

frame.

3.3.2.2 Frame Control - An ACK/NAK timeout is used to

ensure positive receipt of the message frame. Automatic

retransmission occurs for the frame currently outstanding if
.%

the ACK/NAK timer expires prior to some acknowledgement of

receipt from the receiver.

3.3.2.3 Buffer and Flow Control - The DMA channel could

become a bottleneck in the system. Therefore, adequate

Buffering and Flow Control mechanisms must be used. This is

. true for both ends, but is most critical at the LLM (LSI)

-56-

4.

• "%

I !

.- A B I D

B 1C 1 paa 3 132.

iiI I s

~LEGEND:

. Ck 4 para. 3.3.2.1

SC Checksum 4 para. 3.3.2.1

I D Sequence Number 4 para. 3.3.2.4

Figure 3-3 Data Link Frame Header (DLFH)

.7

*4

4.-.

' 5

S.. ,"'','-_..,,. ., . ,. ' ,.,.. .'. . ' , . . ,;. . -.. ,.. , , _. . , , . , .,.,

. end because file transfers from the VAX could conceivably

saturate the LSI node. To provide Flow Control, a "throttle

bit" is provided within the DLFH. By this method, the LLM

could ACK the last frame (and there-by inhibit a

retransmission) but still alert the VLM to stop transmitting

until the ACK was repeated with the "throttle bit" turned

off.

3.3.2.4 Seauence Numbering - At times, the situation may

occur in which the receiver acknowledges receipt of a

message, but an electrically noisy medium damages (or loses)

that acknowledgement (ACK). According to para 3.3.2.2, the

currently outstanding frame would be retransmitted when its

ACK/NAK timer expired. The receiver would then receive a

duplicate frame of the one it had just acknowledged. To

preclude the receiver from again processing this message

request a sequence number is included in the DLFH

(fig 3-3). The transmitter increments this number for

each newly created message frame. The receiver ACKs each

frame it receives but only processes messages containing new

sequence numbers.

3.3.3 Network (Laver 3) -

Typical issues at this level include Error and Sequence

Control 15:1901, Routing [5:196-214], Buffering and

Congestion Control [5:215-2253, and Accounting. The network

. - 58 -
-U

-4

4,* ,,,. [.. ',.. -. ,. ;'... ' . '-.. ' ' ' .. " .- "-. ", . . -:'. . -"v .,. ," ,--' "."-- . . . , J . . .v v

4 is passing data "packets" betweeii logical nodes at this

level.

3.3.3.1 Error Control - Error Control, at this level, only

applies to delayed packets because most data transfers

between logical nodes occur within the same machine (VAX or

LSI). This packet passing consists of passed parameters and

common buffers between called subroutines. Therefore, in

the absence of an electrically noisy medium, traditional

issues of lost, damaged, or duplicate packets are not a

problem at this level.

3.3.3.2 Seouence Control - Sequence Numbering is deferred

to the Transport layer (para 3.3.4.5).

3.3.3.3 Buffering and Congestion Control - Congestion

Control is provided by implementing interface Buffers

between each pair of logically connected nodes. Four

pointers (LOW, PUT, GET, HIGH) are defined for each

buffer. LOW and HIGH define the physical limits of the

buffer in memory and never change. The Sending node writes

to the buffer and adjusts the PUT pointer. The receiving

4 node reads the buffer and adjusts the GET pointer. If

sufficient room does not exist within the buffer for the

packet in hand, then the sending node throttles itself and

checks again later. This ensures that no logical node is

sent data for which it does not have sufficient buffer space

.* - 59-

to contain it.

Although circular buffering was preferred, system

limitations required that flat buffering be used in the

final implementation. This limitation revolved around the

DMA hardware which incremented an addressing register

[18:4-9] to point to the next word for data transfer. This

circuitry could not be programmed to account for buffer

"wrap-around" situations. Thus, all data words constituting

a single message were constrained to be stored in contiguous

memory locations.

3.3.3.4 Routing - Since a unique path exists between each

user (LSI) and process (VAX) pair, alternate routing is not

a consideration. Once the LSI's terminal ID (TID) and the

VAX's process ID (PID) have been established, the virtual

circuit (parts, of which, are shared by other virtual

circuits) will be known and remain static throughout the

terminal session.

3.3.3.5 Accouning - Accounting statistics are maintained

for queueing and computer performance evaluation studies.

Statistics are updated each time that a change in queue

status occurs. These updated statistics are spooled out to

disk for off-line data reduction and analysis.

60-

3.3.4 Transtort (Layer 4) -

Issues at this level include Addressing and Connection

.' [5:325-338], Flow Control [5:338-3431, Process Multiplexing

[5:343-345], Error Control [61, Sequencing and Segmentation

[6], and Command Completion Sensing PAD, which was deferred

from the Physical Layer (ref para 3.3.1.3). Similar to

the Data Link Frame Header (ref para 3.3.2), a Transport

Header (ref Fig 3-4) is required to resolve issues at this

level.

3.3.4.1 Address and Connection - Connection/Termination at

the Transport level consists of the "LOGON" and "LOGOFF"

requests and VAX responses. Within each Transport Header

ref Fig 3-4) is a field set aside for Terminal ID. The

Terminal ID (one of 8 possible values representing one of

the 8 peripherals attached to the LSI) also constitutes the

Circuit ID in a one-to-one mapping.

The Transport Header (ref Fig 3-4) also contains a

Node Identification field. This Node ID indicates from

which node queue the message originated. The primary

purpose of the Node Id is to tag the Accounting data so that

queueing statistics can be calculated.

3.3.4.2 Flow Control - Flow Control and Buffering

techniques are the same at this level as those employed at

the Network level (ref para 3.3.3.3). Maximum buffer size

- 61 -

.w.°-/*'

A CD

LEGEND

fil aebtsrf

A emnl D3pra ...

BI. TemnlMd aa ...

C SeuneNme aa ...

D Chrce on aa ...
E Orgntn oe aa ...

Fiur 3-rnpotHae

I I I I 62

: : % . j ,.-- ,. .' : , k. " J , 6 :,- -,*. . '. ": 4_.- " . .. -. .-.- • - .- .. . 1

will be initially set at 2000 characters and adjusted, if

required, during the implementation and testing stages when

empirical data becomes available.

3.3.4.3 Process MultiDlexin - Upward Multiplexing is used

within the VPM node to transfer the terminal requests to the

proper VAX/VMS process. In this scheme, multiple Transport

connections (VT-100 terminals) all use the same virtual

circuit (DMA) to the host.

3.3.4.4 Error Control - Error Control is not required at

this level due to the method of internally passing the data

between nodes (ref para 3.3.3.1).

3.3.4.5 Seauencina and Seamentation - Sequencing is

normally required at this level in case a large message must

be fragmented into smaller chunks to transit the network

boundaries.

At the Transport level, the data entity is the Message.

The Message size is variable so that bandwidth is not

wasted. This requires a field in the Message Header to

specify the Message size. The maximum Message size is a

function of the maximum VAX data transfer rate. If this

number is large (i.e. - 25 terminal lines X 80 chars/line

2000 chars), then the message may have to be Segmented with

Transport Header Sequencing information to identify the

* parts (packets) of the Message while it is moving about

- 63 -

within the network. The receiving end collects all the

message parts (packets) and reconstructs the original

message in its proper order.

This feature is only needed for large file transfers.

The only large file transfer within the FEP system consists

of the host sending the terminal a large display file.

Therefore, Message Segmentation would normally only be

required at the VAX node (VPM) while Message Reconstruction

would normally only be required at the LSI (LTM) end.

However, even this limited application of segmentation

is not really required. Since there can be, at most, one

single outstanding frame at any given time (ref para

3.3.2.2), there is no possibility that frames will be

received out of order. Also, there is no special action

that the LSI FEP software must perform upon receipt of

process-to-screen display traffic. It is transparent to the

LSI FEP software whether the characters forwarded to the

terminal arrived as part of several independent messages or

as segmented frames of one large message. Therefore,

segmentation and reconstruction would introduce unrequired

complexity into the system.
'

However, Transport Header sequencing (ref Fig 3-4),

mainly used at this level for segmentation, will be retained

as part of the "Support for LCN Study" (ref para 2.2.2.3)

64,

1. 1 70 . .. ,. . -

requirement. This Message Sequence Number will be used to

* track the movement of the message through the network nodes

and queues.

3.3.4.6 Command Completion Sensing PAD - One of the LSI

(LTM) responsibilities is to assemble a complete interactive

request and ship it to the VAX. Command Completion Sensing

is the software recognition that an input line (assembled

from the terminal) is complete and ready for VAX processing.

Normally, a carriage return signifies the point at which the

request is complete (LINE mode). However, certain processes

expect and respond to individual keystroke commands

(CHARACTER or WORD mode) [7:3.41. For those processes, the

LTM node must be "clued-in" that the process responds to

O single character input. Therefore, a Mode field is included

in the Transport Header (ref Fig 3-14) where-by the VPM

node will inform the LTM node of the current "mode" of

operation.

3.3.5 Session (Layer 5)-

At this level, a Network Status and Control function

exists to allow the System Manager to initialize, display

status, and terminate the network. System level alerts and

warnings are generated and sent to the respective system

consoles (LSI SOC or VAX SOC) .

* -65-

3.3.6 Presentation (Layer 6)-

Functions at this level typically provide the user with

certain useful, but not always essential, services. Among

these services are cryptographic transformations, text

compression, terminal handling, and file transfer [5:386).

These functions are either a) not required for the FEP

system, or b) addressed at a lower protocol level.

Therefore, no Presentation issues were designed in this

investigation.

3.3.7 Application (Laver 7) -

The only Application function identified within the

system is the Accounting (and disk recording) of the

queueing statistics.

3.14 Summary -

This chapter described the FEP system from a network

perspective. Logical and physical nodes were defined and

identified. The ISO protocol model was used to explain the

* services and requirements at each level of the network

hierarchy. Techniques for data movement and control within

the network were discussed. Certain traditional protocol

-66 -

.4

requirements were eliminated and the rationale used to reach

these decisions was presented.

-4.

4'
-4

'-A-A

4)

-A
-4

'p

-4.

4.~

44

4.-.
.4-

4.'.

1~..

-67-
.4.

.4.

(4

.1k,
'~,.... *~...4 .4. '~ 4 p*,*..*.. *.- '.. 4. 4** **'..* 4.4 *.,- .4...-. .4-4 . 4 . - - - 4.....*

'..

CHAPTER4

SOFTWARE DESIGN AND IMPLEMENTATION

This chapter describes the structural design and

implementation details of the FEP software which was

expected to execute on the LSI-11/23. It begins with a

discussion of the Software Caaiiisand Limitations

which influenced and bounded the implementation effort.

Next, the Software Conventions used within the program are

discussed. Then, an Overview of the Software Structure

provides a skeletal outline of the program processes.

Finally, the Synopsis of Program Modules describes the

~processing steps within each major software module.

.-°

E : Supplementary material can be found in Appendix B (LSI

" FEP Structure Charts), Appendix C (LSI FEP Data Dictionary),

~Appendix D (LSI FEP Source Code Listings), Appendix E (LSI

FEP Memory Load Map), Appendix F (LSI FEP User's Guide), and

Appendix G (LSI FEP Programmer's Guide).

68

.4

V ..,..",."".." " ,";.,.,'''''''''''.." . . "."."-.".,"
" ' '

-; - ''' ' , ''

4.1 Software Capabilities And Limitations -

The 'C' language was selected for LSI FEP

implementation because of its availability and power of

expression beyond PASCAL. The version of 'C' run on the

LSI-11/23 [21; 23) implemented most of the language

Capabilities [22). Those capabilities and limitations which

-are of particular importance to this thesis effort are

discussed in the following paragraphs.

4.1.1 Structured Constructs -

'C' provides the fundamental flow-control constructions

required for well-structured programs: decision making (IF
4

- ELSE); looping with termination at the top (WHILE,

FOR) or at the bottom (DO); and selecting one of a set

of possible cases (SWITCH) [22:3]. Although

non-structured GOTO and LABEL constructs are provided within

the 'C' language, neither was used within this thesis

implementation in order to preserve the top-down execution

flow.

6,

N,,

-a-•

'N. ~*'N: .- ~ d . N.**~*~ -~-~ * N~* .A? '-

. . . * . . * . . N .

~4.1.2 Data Structures-

The fundamental 'C' data structures are characters,

integers, and floating point numbers. In addition, there is

a hierarchy of derived data types created with pointers,

arrays, structures, unions, and functions. 'C' provides

pointers and the ability to do address arithmetic. The

arguments to functions are passed by copying the value of

the argument. Therefore, it is impossible for the called

function to change the actual argument in the caller. When

it is desirable to achieve "call by reference", a pointer

may be passed explicitly, and the function may change the

object to which the pointer points [22:3).

4.1.3 Global vs. Automatic Variables -

Any function may be called recursively, and its local

*variables are "automatic" or created anew with each

invocation. When the function terminates, its automatic

variables are destroyed. Other than locally defined within

the function, its variables may be external (but known only

within a single source file) or completely global. Both of

the latter types remain defined throughout program execution

and can be referenced by all program functions [22:3].

4.1.4 Variable Name Lengths -

A program written in 'C' must be compiled by the 'C'

C -70 -

compiler --- producing a macro file which must then be

assembled using the RT-11 Macro Assembler. Therefore, the

'C' source program must comply with the syntax rules of both

languages in order to produce errorless object code. The

next paragraph indicates a few areas where conflicts exist

between the syntax rules of the compiler and those of the

assembler.

Names are made up of letters and digits; the first

character must be a letter in 'C' (22:33), but may be a

number for the RT-11 Macro Assembler [15:3-6]. The

underscore "-" counts as a letter in 'C' [22:33), but is

rejected as an invalid character by the RT-11 Macro

Assembler [15:3-6]. Only the first 8 characters of an

internal name are significant in 'C', although more may be

used [22:33). However, the RT-11 Macro Assembler only

recognizes the first 6 characters as unique and significant

[15:3-6].

These inconsistencies forced a more cryptic naming of

certain functions and variables than would have been

- desired.

4.1.5 Limited Symbolic Definition CaDabilitv -

Although the vendor documentation [21] does not

reference it, an upper bound does exist for the number of

user defined symbolic constants that Telecon 'C' will

- 1 -

support for each program [23:6]. These globally defineda.

. "- constants are desirable from a software engineering aspect

. due to the resulting ease of software maintenance. Although

the exact threshold was never calculated, "LSIFEP.C"

exceeded it several times during the development effort.

Each such instance was resolved by eliminating some

desirable symbolic constant and replacing it with its

hard-coded value wherever it was referenced.

4.2 Module Communication Conventions -

Very few conventions were designed into the program in

order to simplify its maintenance. A small set of global

variables were declared in order to minimize the intermodule

-.. data-flow complexity. Most intermodule communication takes

* place via character arrays, structure tables, and indexes

into both.

4.2.1 Character Arrays -

Three character arrays exist. "InChar" is an 1800

element array divided into 9 parts (8 terminals ports + 1

DMA port), each containing storage for 200 characters.

This array accepts characters via interrupt service routine

processing of terminal keyboard input characters. "OutChar"

is an identically configured array which contains output

, - 72 -

" -' ". '". .' .' . . -" ' ' "' " " ' '' ' ""- " " " " " " " " " " " " - " - " " " . . . "- . . "
'. " ", . . .% " *. . * " .'. '. . ". " " .a' ,' . .- ". - '- o '= .. " ' - "

characters destined for output to one of the 8 terminal

display screens. "NodeChar" is a 4000 element array divided

into 2 parts (terminal-to-DMA and DMA-to-terminal traffic)

containing storage for 2000 characters each. This array

serves as a queueing buffer for complete message transfers

between network nodes.

4.2.2 Structure Tables -

Three structure tables exist. The Port Status Table

- "PST") contains buffer indexes, I/O port addresses, and

" other information desribing the status of each of 9 ports.

The Node Buffer Table ("NBT") contains buffer indexes and

the node identification information required for moving

message traffic between the two LSI FEP nodes. The

07 Transport Header Table ("THT") contains the Message

Transport Header skeleton which is prefixed to each message

prior to movement of that message to one of the node queues.

.43 Overview Of The Software Structure -

Utilizing the RT11XM extended memory features, the

LSIFEX.SAV executable image was created by specifying to the

RT-11 Linker the order and relative locations desired for

the seven object modules which form the LSI FEP software.

Likewise, the low memory features of the RT11SJ monitor were

"p -73-

°o4.

I
°

o ° € Q ," " - " -- • • . .-. w- 4".W 4" 4" " - " " . ,- " . ." r .1 " " " . ." " . ." " - ." • "." ." ." .

used to create the "LSIFEP.SAV,, program image.

The source code programs which generate these sevenFmodules are classified according to placement within memory

and are discussed in the following sections. Program names

ending with ".C" are 'C' source programs while those ending

with ".MAC" are macro assembly language programs. A Load

* Map of "LSIFEX.SAV" is contained in Appendix E. Figure 4-1

contains a graphic representation of central memory

placement of the software modules within "LSIFEX.SAV".

4.3.1 Low Memory Software -

Software placed within the confines of low memory

included those functions and data areas which were

0 constrained (ref para 2.3.7) to reside there and those

data areas (primarily NBUFF.MAC) which served as filler to

ensure that the PARI restrictions (ref para 2.3.7) were

met.

4.3.1.1 LFEPIOC - The LSI FEP Input/Output 'C' module is

a derivation of the Standard I/O package (STDIO.H) included

with the 'C' compiler [22:143 and 21:8). Routines

non-essential to the LSI FEP software and/or not supported

by the Telecon 'C' compiler were removed in order to save

memory.

74

q0

9g

-I
,-

a.** * . ..p 7 * * . . . * * '

. *

De'", , " "_ :. :: r, """' - : " " ?,i ."', ? " ? ? ' 2"" ":) 2.-..., , , , . ? '., .-. '.-. * C. ': " "? " "' " " "" ., " , "- < "" " '

' . starting ending
address address

.. 001432 1 1, : LFEPIO

I 007740

007742 I
-I I LFMLLO

II

I _014136
014140

NBUFFI I

' I 023776
I- 024000 1 1

I LFEPLO

I _ _ __ I 051462
051464 I I

I TBUFF
I I 060502

S/ onoRT11XM /
/ /

/ monitor /

.Il I 155556
1 160000

LFEPHI

''_ 166676
166700 I

LFMLHII I I
1__ 1 202476

Fig. 4-1 LSIFEX Memory Layout

-75-
4,i

"4.,, ",."""v, ; ;.:, . ..,:..,, '.'..- .,'. . . ._...,

J I l l i i 'ill .. .il

. - = , ° , . .- . .- .

4.3.1.2 LFMLLO.MAC - The LSI FEP Macro Library (Low

Memory) assembly module is a derivation of the Telecon 'C'

I Runtime Support Library "CLIB11.MAC" (211 as augmented by

- previous classroom (EE6.90 - Real Time Programming

Laboratory) upgrades. Again, non-essential functions were

removed. The remaining program was further divided into aI-.: portion (LFMLLO.MAC) that was constrained (ref para 2.3.7)

to reside in low memory and a portion (LFMLHI.MAC) that

could reside in extended memory.

4.3.1.3 NBUFFMAC The Node Buffer macro program contains

the data item definitions which define the size and start

address of the character array "NodeChar".

(4.3.1.4 O - The LSI FEP (Low Memory) 'C' program

contains the main functions which implement the LSI FEP

processing. Program initialization, interrupt servicing,

background processing, and program termination are contained

there.

4.3.1.5 IiiI.MAC - The Terminal Buffer macro program

contains the data item definitions which define the sizes

and starting addresses of the terminal character arrays

"InChar" and "OutChar".

4.3.2 Extended Memory Software -

Two software programs were placed into the extended

-76 -

• # t' . - .#-., , * " . " " -," '-, .. , '. ,. '., *.%. .' . -.-. . '-... @-

memory portion of the LSI-11/23 physical address space.

These programs contained no functions which were called by

interrupt processing routines. Therefore, the PARI

restriction (ref par 2.3.7) did not apply to them.

4.3.2.1 LFPH.C - The LSI FEP (High Memory) 'C' program

contains routines called during synchronous processing

events. Typically, these routines provide some low priority

processing such as displaying some aspect of the system

status upon the SOC terminal screen or recording the

accounting statistics.

4.3.2.2 LFMLHI.MAC - The LSI FEP Macro Library C High

Memory) assembly module contains those functions (ref para

4.3.1.2) which could be removed to extended memory.

Typically, these functions provided communication with the

floppy disk files.

4.4 Synopsis Of Program Modules -

Program modules reside either in low memory or in

extended memory.

* 4.4.1 Low Memory Modules -

The following modules perform the main functions of the
LSI FEP software.

- 77

.4z .- %- - Z--a

4.4.1.1 Main - This module (module 0) is the top segment

to which control is transferred by the 'C' Shell upon

program initiation. This module calls "InitSystem" to

initialize the database and activate interrupts. It then

calls "PerfNormalActivities" to perform the synchronous

tasks (move data between nodes, output characters to the

terminal screens, etc.). When the SOC operator aborts the

system (ref. paras 4.4.1.5 and 4.4.1.15), then control is

returned to this module which then calls "TermSystem" to

deactivate interrupts and close files. The module finishes

its processing by an exit to the RT11XM monitor.

4.4.1.2 jst - This module (module 1) controls the

database initialization. It begins processing by opening

cj the LSIFEP.DAT accounting file. It then sets up the four

pointers (ref para 3.3.3.3) into the terminal buffers

"InChar" and "OutChar" for each of the nine entries in the

Port Status Table (PST). It then sets up the four pointers

into the "NodeChar" buffer for each of the two entries in

the Node Buffer Table (NBT). It then moves the address of

each interrupt service routine into the corresponding entry

of the PST for easy retrieval by the "InitInterrupts"

S,"routine. It then calls "InitPST" to complete the PST

initialization. It then calls "InitInterrupts" for each

entry in the PST to initialize the interrupt for that port.

- 78 -

'I"

-.0*% .

4.4.1.3 nitPST - This module (module 1.1) begins

, processing by coding each PST entry with a unique terminal

identification (TID). It then fetches and moves to the PST

the addresses of the four port I/O interface registers:

Receiver Control and Status Register (RCSR), Receiver Buffer

Register (RBUF), Transmitter Control and Status Register

(XCSR), and Transmitter Buffer Register (XBUF) [20:221-223]

for each of the nine entries in the PST. It also moves the

address of each interrupt vector (20:508-509] to the nine

entries of the PST. It completes processing by initializing

the terminal mode (ref para 3.3.4.6) to "LINE" mode.

4.4.1.4 InitInterruots - This module (module 1.2)

activates the interrupts for each of the nine ports defined

in the PST. It begins processing by setting up a Processor

Status Word (PSW) mask [20:176-177; 207-209]. It then saves

(in the PST) the current contents of the port's interrupt

vector and interrupt PSW. It then resets these two

locations to the address of the interrupt service routine

(fetched in "InitSystem") and the new PSW mask just

generated. It then turns on the Interrupt Enable bit (bit

6) of the corresponding RCSR [20:221].

4.4.1.5 SOClnterruDtServiceRoutine - This module (module

1.2.1) executes when control is passed to it by the RT11XM

monitor in response to a console keyboard action at the

System Operator Console (SOC). It begins processing by

-79-

V'' :. % . . ." .'. . .'S ' .' -% . ' . ." -'i,.'''' - '' '''''" ","- . . :.",

calling "entint" to save the register values of the

interrupted program. It then copies the input character to

the input queue "InChar" and echoes the character to the

console screen. If the character was a carriage return, the

module echoes a line feed character to the screen. If it

was a Control-C (AC), special termination processing occurs.

If it was a "delete" character, special processing occurs.

If it was neither, the InChar "put" index is incremented for

the next character.

The AC input signals the SOC operator's intention to

abort the LSI FEP system. This input results in the module

setting the "AbortFlag" boolean variable to "YES". This

flag is checked in module "PerfNormalActivities".

A "delete" character requires special treatment

because, instead of adding characters to "InChar", this

action results in withdrawing characters. Processing

consists of verifying that the "delete" character was not

the first character typed. This ensures that at least one

character already exists in the buffer and can be deleted.

If such a character exists, then the "InChar" "put" index is

decremented so that the iiext input character will over-write

the character intended for deletion. Then, to clean-up the

display terminal, a series of "backspace" and "space"

characters are output to blank out the deleted character and

reposition the screen cursor.

-80-

Processing terminates during a call to "retint" which

A restores the register contents of the interrupted program

and executes the "RTI" (return from interrupt) assembly

language instruction.
.4

4.4.1.6 TlInterruDtServiceRoutine - This module's (module

1.2.2) processing is identical to that of module 1.2.1

except that it performs no special processing for the C

input and it services character input from terminal 1.

4.4.1.7 T21nterruntServiceRoutine - This module's (module

1.2.3) processing is identical to that of module 1.2.2

except that it services characters input from terminal 2.

4.4.1.8 T3InterruptServiceRoutine - This module's (module

O1.2.4) processing is identical to that of module 1.2.2

except that it services characters input from terminal 3.

4.4.1.9 T41nterruotServiceRoutine - This module's k..odule

1.2.5) processing is identical to that of module 1.2.2

except that it services characters input from terminal 4.

4.4.1.10 TSInterruotServiceRoutine - This module's (module

1.2.6) processing is identical to that of module 1.2.2

except that it services characters input from terminal 5.

4.4.1.11 T6InterruotServiceRoutine - This module's (module

1.2.7) processing is identical to that of module 1.2.2

except that it services characters input from terminal 6.

-81-

4.4.1.12 T7InterruDtServiceRoutine - This module's (module

1.2.8) processing is identical to that of module 1.2.2

except that it services characters input from terminal 7.

4.4.1.13 DMAInterruotServiceRoutine - This module (module

1.2.9) services all DMA interrupts. It begins processing by

determining the reason for the interrupt. If non-existant

memory was accessed, it sends an error alert to the SOC. If

the host has raised an input request, this module calls

"SetUpForInputDMA" to process the request. If none of the

above reasons, it bases further processing upon the last

reported status of the "DMABusyFlag".

If a word mode input was expected, the word is fetched

and inspected. This word represents the host's word count

for an ensuing block mode transfer of data across the DMA

channel. If sufficient buffer space exists in "NodeChar" to

hold a message of this many characters (twice the word

count), the DMA interface is programmed [18:chapter 41 to

expect a block mode DMA input from the host. If buffer

space does not exist, an error alert is issued to the SOC

screen.

If a block mode input was expected, then this interrupt

notifies the LSI that the block tr-.nsfer has completed. The

module adjusts the NBT pointers into "NodeChar" and resets

the "DMABusyFlag" to input word expected.

-82-

%,

If a word mode output was in progress, then this

interrupt signals the host response to the block mode output

request. If the host is prepared to accept the data block,

the DMA interface is programmed for block mode output and

the "DMABusyFlag" is set to block mode output in progress.

If a block mode output was in progress, then this

interrupt signals the completion of the output transfer.

The "DMABusyFlag" is reset to word mode input expected and

the DMA interface is programmed accordingly.

4.4.1.14 SetUDForInDutDMA - This module (module 1.2.9.1)

begins processing by setting the "DMABusyFlag" to word mode

input expected. It then programs the DMA interface

accordingly.

4.4.1.15 PerfNormalActivities - This module (module 2)

begins its processing by displaying upon the SOC terminal

the time at which the LSI FEP system was activated. It then

enters the large system idle-loop (ref. section 2.3.2)

which encompasses all synchronous processing tasks. The

software will continue to idle within this loop as long as

the data item "AbortFlag" remains equal to the boolean

constant "NO" (defined as 0). When the SOC operator keys

in a control-C (AC), then "AbortFlag" is set to the boolean

"YES" (defined as 1). When the bottom of the loop is

reached, the status of "AbortFlag" is checked. If it equals

-U.

~~- 83 -

, ri , . % - . . - ' , . . . , . - . . • . . •

"YES", then the statement following the loop (return to

• ."Main") is executed.

Within the loop, three main synchronous tasks are done.

For each terminal, if new characters have been deposited in

the terminal input buffer by the interrupt service routines,

then "SrvlnputQueue" is called to service that input queue.

Likewise, if output characters have been deposited in one of

the output queues, then "SrvOutputQueue" is called to

service that output queue. If a message exists in one of

the node queues, then "SrvNodeQueue" is called to service

that message.

p

If no work exists when a particular queue is checked,

then the "put" and "get" pointers are reset to their "low"

value. This step is required because a previous design

decision (ref para 3.3.3.3) disallowed circular buffering.

By synchronously resetting empty buffer pointers to their

initialized values (ref para 4.4.2), the software ensures

that the full buffer capacity is available for the next data

entry.

4.4.1.16 SrvlIn1utQujeue - This module (module 2.1) scans

the input character buffer "InChar". If the character

currently being scanned is a carriage return or if the

terminal is in the "CHARACTER" mode, then a complete user

request is present and can be assembled for DMA transfer to

-" ""-84-

the host. Otherwise, the next character in the buffer is

. scanned and similar testing performed until all the

characters in the buffer have been scanned.

If a complete request exists in "InChar", then a check

is made as to whether the SOC buffer is being scanned. If

yes, then module "EvalSOCInput" is called to determine if

V DMA transfer is required. After this test, and if DMA

transfer is required, then a character count is calculated

for inclusion in the Transport Header (ref para 3.3.4.5).

Since the DMA interface requires full word (two character

bytes) transfers (18:4.9], an odd number value for the

message size is incremented to make it even.

* If buffer space exists to hold a message of this

character count, module "MoveMsgtoNodeTTxDMA" is called.

Otherwise, an error alert is issued to the SOC screen.

4.4.1.17 EvalSOCInput - This module (module 2.1.1)

determines if a SOC system status request has been issued.

If so, then this request will be processed locally within

the LSI and not forwarded to the host. If not, then the

"goDMAFlag" is set to "YES" for "SrvlnputQueue" processing.

If the SOC request is to display the PST, then

"DispPST" is called. If the SOC request is to display the

NBT, then "DispNBT" is called. If the SOC request is to

display the current system time, then "DispTime" is called.

-85-I

'p.

*p'**%* S ~ S * . - b * * S S ~ ' - . -. ' . . - '-

RD-Ri38 152 DEVELOPMENT OF R COMMUNICATIONS FRONT END PROCESSOR 2/,3
(FEP) FOR THE VAX-ii/..(U) AIR FORCE INST OF TECH
WRIGHT-PATTERSON AFB OH SCHOOL OF ENGI. A F NASTY

NLSSIFIED DEC 83 AFIT/CS/EE/83D-iT F/6 72 NmhLS OE S Eo hhhhiIl
EhhhhhhhhhhhhE
EnhNONEhsonhhhhE
EhshhhEEmhhhhE
EhhhhhhmhhhhhE
EhhhEshhhhhhhE
onhhNINE onhEEo

ox.4X

11112.

.4i

V.. .L

&W j.

" 1-6

1.25 LA 1.

MICRCOP REOUIO.ET1HR
KA"LBUEUO SAD1D-%-

e.4 -P ,

* b-. * . • - .°.- •. " ° .

4.4.1.18 MoveMsgtoNodeTTxDMA - This module (module

2.1.2) is called by "SrvInputQueue"' when a DMA output

- transfer is required. This module calls module

"BldTransportHeader" to construct the Transport Header (ref

V Fig 3-4). It then moves the Transport Header characters

into "NodeChar" followed by the "InChar" terminal request

characters. If the number of characters in the terminal

message is odd, then a harmless line-feed character is added

to "NodeChar" to pad the message into an even word block.

Module "GatherStats" is then called to record the accounting

data of this message's entry into a queue.

4.4.1.19 BldTransportHeader - This module (module

2.1.2.1) constructs the Transport Header as defined in

Figure 3-4. Processing consists of the movement to the

Transport Header Table (THT) skeleton of either single

* character bytes or strings of bytes (via calls to the

- "stroopy" module). Also, integer to ASCII character

conversion of numeric quantities is accomplished by call to

subroutine "intascii".

4.4.1.20 SrvOutDutOueue - This module (module 2.2) moves

character data from "OutChar" to the Transmitter Buffer

Register (XBUF) for display upon the user terminal screen.

. If the Transmitter Control and Status Register (XCSR)

transmit ready bit (bit 7) is set = 1, then a new character

can be moved to the XBUF. Otherwise, this module returns to

-86-

,em'

d,5. ' ,: ,! ' .' .". '. . %- - V,' ' V % %!, 'V' .. '. - . .'.* - .- , *,..* , ,,. - .v..' .:'-

"PerfNormalActivities" to continue other processing.

" L .4.1.21 SrvNodeOueue - This module (module 2.3)

controls the movement of messages between LSI FEP network

nodes. Two nodes exist. The first node (entry 0 in NBT) is

labeled TTxDMA and is used to hold message traffic input

from the terminal which is intended for output along the DMA

4.- interface. The other node (entry 1 in NBT) is labeled

DMATTx and is used to hold the DMA input message traffic

which is destined for output to the terminal screen.

Processing begins by scanning the Transport Header

(fig 3-4) to determine message length and terminal

identifier (TID). Subroutine "strcompare" is called to

compare the message TID with those recognized by the system

and stored as entries in the PST. If no match is found, an

error alert is issued to the SOC terminal screen and the

node is flushed of all message data by re-initializing the

"NodeChar" indexes.

If a match is found, then the ASCII message character

count is fetched from the Transport Header and converted to

integer via a call to "asciiint". If the node being scanned

is TTxDMA, then module "TTxtoDMAOutput" is called.

Otherwise, "DMAtoTTxOutput" is called.

- 87 -

................

)$I"

';- =. V% -. .-. .I o-- .6* .* * .-.7 -;w , :--. -..1 .* 6 v

4.4.1.22 TTxtoDMAOutDut - This module (module 2.3.1)

-< activates the DMA output request to the host computer. If

the "DMABusyFlag" status indicates word mode input expected

/ and the DMA Control and Status Register (DMACSR) reports the

DMA idle, then the DMA interface is programmed for word mode

output and the "DMABusyFlag" is set to word mode output in

progress. The word that is output is the character count of

.the message which would be sent to the host in block mode.

Subroutine "GatherStats" is called to record the release of

message data from the TTxDMA queue.

If either condition is not met, an error alert is

issued to the SOC terminal screen.

4.4.1.23 DMAtoTTxOutput - This module (module 2.3.2)

controls the movement of message data (received from the DMA

interface) from the DMATTx buffer to the appropriate

"OutChar" buffer. First, "GatherStats" is called to record

the release of message data from the DMATTx queue. Next,

is moved to the corresponding PST entry. Finally, each

message character is copied from the "NodeChar" buffer to

the appropriate "OutChar" buffer and pointers adjusted

accordingly.

4.4.1.24 TermSItem - This module (module 3) is executed

once after "AbortFlag" has been set to "YES" in

.... 88..

i " " 2-- ~~~~~~~~~~~~~~~~~~~~. i .' i '... ".. ,o.. . -.... -... ...- -,-,-........- ...-. ,,

"SOCInterruptServiceRoutine" and, in response, the large

loop in "PerfNormalActivities" terminates and returns

control to the top segment "Main".

"TermSystem" restores all interrupt vectors and

Processor Status Words (PSW) (ref para 4.4.1.4) to their

original contents. A message is then output to the SOC
'

terminal indicating the time at which the "abort" command

was processed and the duration of the LSI FEP processing.

File "LSIFEP.DAT" is then closed and the software exits

to the RT-11 monitor.

'4

4.4.2 Extended Memory Modules -

C The following paragraphs describe the 'C' modules which

have been mapped to extended memory. These modules

typically provide services to the synchronous processing

modules described earlier (ref para 4.4.1). Since these

services possess no hierarchical relationships to each

-,. other, the module ordering conventions were arbitrarily

assigned as the need for a new service became known. The

module numbers represent the order in which the modules

appear in the program section 'LFEPHI.C'. To preclude

confusing these module numbers with those of 'LFEPLO.C',

each extended memory module number will contain an 'X'

prefix.

- 9 -

*4 . + +, € '. ,, -_ , . ." .. , . ,.. ,-...-',,! •, •, ., , ". . .-. 44- "44. .• ' .'/ ,.., .: ,.. ,.,.. . '. .- ,

4 4.4.2.1 I - This module (module X.1) displays the

"" . status of selected fields of the Port Status Table (PST)

upon the SOC terminal screen. The format of this display is

contained in Figure F-4 of Appendix F.

4.4.2.2 DisDNBT - This module (module X.2) displays the

status of selected fields of the Node Buffer Table (NBT)

upon the SOC terminal screen. The format of this display is

contained in Figure F-3 of Appendix F.

4.4.2.3 GetCurrentTime - This module (module X.3) calls

an assembly language routine, 'gtime', which fetches the

current system time and returns it in a two word parameter

table. This module then decodes these two words, converts

the numbers to ASCII characters and produces a displayable

' time in the format of HH:MM:SS:TT where HH = hours, MM =

minutes, SS = seconds, TT = ticks (60 ticks per second).

Four global data items ('StartHr", 'StartMin,

'StartSec', 'StartTic') are defined to contain the initial

start-up time of the LSI FEP system. These start-up values

are subtracted from the time calculated at system

termination to provide the elapsed time for the LSI FEP

operation. These data items are initialized with the

current system time during the initial calling of

'GetCurrentTime'.

..- 90 -

Pb:

4.4.2.4 DisIme - This module (module X.4) calls

'GetCurrentTime' (module X.3) and then displays the

formatted time upon the SOC terminal screen.
%9

4.1 .2.5 CalcElansedTime - This module (module X.5) is

called once - at LSI FEP system termination. This module

calls 'GetCurrentTime' (module X.3) to fetch the current

system time. It then subtracts this time from the four

start-up values and provides an elapsed time.

4.4.2.6 DisDElapsedTime - This module (module X.6) calls

'CalcElapsedTime' (module X.5) to calculate the elapsed

time. It takes the elapsed time and converts the integer

values to ASCII characters and displays the result upon the

SOC terminal in the form HH:MM:SS:TT.

4.4.2.7 GatherStats - This module (module X.7) records

the accounting data for LCN queueing study (ref para

2.2.3.3). Calling parameters to this subroutine are a

* pointer to a character string which forms a Transport Header

(ref Fig 3-4) and a reason code specifying which action

(1 = queue entry, 2 = queue exit) is being recorded.

Processing begins with a call to 'GetCurrentTime' (module

X.3) to fetch the current time. The time, action code, and

Transport header are then written to the disk file

'LSIFEP.DAT' in the format specified in Figure F-5.

-91-

* - s * . .Ite* . - , % *5* . %

4. i..* i.- A - i 7.-A .-j -. 7- .16f . I- TT V ~ Mq~ :-- t -TUT-7 M

4.5 Summary -

This chapter described the software design and

implementation details. It began by discussing the

capabilities and limitations of the Telecon 'C' language.

Next, programmer conventions for inter-module software

"-* communication were outlined. The chapter continued with an

overview of the software structure - describing the programs

which reside in low memory and those which reside in

extended memory. The chapter concluded by presenting a

synopsis of program modules which reside in the LSI FEP (Low

Memory) and LSI FEP (High Memory) programs.

S92

IS.

.4o

.. _ ..

0'" -.~~~~ ~~- 92 ,- , ... ,,. -.-. -€..'.,'-'--J'¢.-" .

CHAPTER 5

SOFTWARE TEST AND EVALUATION

This chapter describes the testing phase of the

Software Development Life Cycle (ref para 1.5.1.5).It

begins with a short discussion of Testing Methodology and

ends with a presentation of the Testing Results.

5.1 Testing Methodology -

Two testing strategies were used during this

investigation. A coarse test was conducted using

Requirements-based testing [31:185]. A more detailed test

was conducted using a Program-based testing [31:195]

approach.

5.1.1 Recuirements-based Tgsting -

:: The traditional requirements-based testing method is

"functional testing. In functional testing, a program or

-93

"",

software system is viewed as a "black box" which accepts

known inputs, applies the relevant function to these inputs,

and generates outputs [31:185). It is usually applied over

a range ofL classes of input data and typically delivers

output belonging to one of a number of different possible

classes.

A rigorous functional test would include selecting the

input data classes, identifying extreme cases and boundary

conditions, and establishing the class categories for the

*expected output. The successful accomplishment of these

steps pre-supposes the existence of concise and detailed

4 requirements and specification documents.

Due to the general nature of the FEP Software

4D Requirements Analysis (ref Chapter 2 and Appendix A), such

-. a rigorous functional test could not be conducted. The

system functional requirements were presented in a

descriptive rather.than quantitative manner. Furthermore,

the full set of software requirements (Appendix A) was

consolidated into a summary table (Table 1-1) for easier

* assimilation. This summary table was then further condensed

into the page length System Level Requirements Table (Table

2-1)upon which the requirements prioritization (ref para

2.2)and software design (ref Chapter 4) were based.

Therefore, it is this final capsule-format of the

49

W- = 7M I U Y -.- .5 W- C8 V S- W W4 aV TV 7 7. 7. %%. .-7- . . -a

functional requirements which the functional test would be

conducted against. Since this generalized format precluded

an in-depth functional test, the goals of the functional

test were altered.

4' Rather than test implemented functions at a microscopic

level, it was decided that the test should be conducted at a

macroscopic level. 'The resulting purpose of the test was to

identify the presence, absence, and well-being of the

functions displayed in Table 2-1. In other words, rather

than providing concise quantitative results, the test would

produce a high level survey of implementation completeness.

This test was performed mostly by inspection and it

identified functions (ref Table 5-1) which were:

a.ipeetdwthn biu ih-ee iiain

* a. implemented with noobvious high-level limitations

c. not implemented (due to prioritization decisions)

5 ~ ~ 5.1.2 Program-based Testing -

One of the weaknesses of requirements testing is its

failure to test computational features of a program which

are related to the design and implementation of the program

and which are not a part of its requirements [31:195].

.4, Program-based t 'sting iv.olves the selection of test data

which tests r.ecific computational structures of the

-95-

- - - - - - - - -- - - - - - -. .%W

program. The most widely studied program-based testing

* methods are those that involve the selection of test data

which causes the execution of specific statements, branches,

or paths of the program. These methods are referred to as

"structured testing methods" [31:195].

5.1.2.1 Branch Testing - Branch testing was the earliest

form of structured testing to be studied and systematically

applied to the testing of programs [31:196]. The technique

requires that test data be constructed that causes each

branch in a program to be transversed at least once.

5.1.2.2 Statement Testin; - A more restricted kind of

structured testing, statement testing, requires that each

statement in a program be executed at least once on some

test [31:196].

5.1.2.3 PathbI.ejtnjg -Several studies of the

effectiveness of branch testing indicates that there are

large numbers of errors whose existence is not necessarily

revealed by the testing of all branches in a program

[31:1991. Many of these errors are related to combinations

4- of branches and are revealed only by a test that causes a

program path to be followed which contains the combination.

Path testing requires that every "logical path" through a

program should be tested at least once. The difficulty with

this idea is that a program which contains loops will, in

-96-

N N

general, have an infinite number of possible paths [31:199].

5.2 Testing Results -

Both requirements-based (black box) and program-based

(white box) testing were performed. As discussed

previously, the black box testing was conducted as a survey

approach to assessing the functional completeness of the LSI

FEP software implementation.

Branch testing was chosen as the program-based testing

strategy because it enabled a thoroughness beyond that of

statement testing, yet avoided the prohibitively expensive

* effort of a comprehensive path testing. It was complemented

throughout the software development process by informal code

walk-throughs conducted by the author.

5.2.1 Black-box Testing Results -

Table 5-1 indicate3 that all of the Top priority, High

priority, and Medium priority (ref para 2.2) software

requirements have been implemented to some extent. The

following paragraphs describe those requirements in Table

5-1 which failed the requirements-based testing.

5.2.1.1 Software on Each Processor - Although the scope of

this thesis project specifically limited the implementation

-97

'% ~ ~ ~ ~ ~ ~ ~ 6 A. q~~~..*,~**.

, F n i

.mI

I II ,) I

I I I 1 10 I
I a W .I

'a. 02 1 I I.40 1 1 1 1 04 1

I_.. I I . 1 II

"o (I .- 1 4,- 1 cc I0 I I I
l- I I lI 0 I- II

0 r. I I 10.) - .0.1 I r I r" I . I - " I I

II)i 1 C) JE c 41 I

I-I4 I II

4) 1 CL~ 0) I I I

'. I . o 1 1a

0 1 V) 1 0) m 0 10 -1 o/ t

I I I ".XI I C IS I

(D::: 1 8 r. 4o I I o 0 1C

I. 1 0 I 1 1 1 I I n I I I I I
SV I I I cc I I. 1 0 41 i I

'..'I " I I I L.I I I I 0,P

cw I It I I 1 0)) I Ia I

I4 I I I -c I I 1 44 14 I - 1E I EI

I 1 . • 1 • .I0. • • 1 .U. 0 :

~ I II I I I. I I I
02 I I 1 04 I 1

4) I II .10 I I I I I CLI

III I I I I I I I
I I *l 4-) 4- I I ,a . I = 1 I

I. V a) I. 1)OW O I -. 1 2 1 1
1 I4I 0I)s4 1) 1 0 Ibo I I 1 0

cc1 3 ul4I WI -0I c I a= I I 14)I I r-q I I m
I I I . I c 1 4 1r %I I I Ia. e-134. I I 1 I.

I2 1W 0 ILCI .- iI I d) 1 1.-l V I c 1 I)1:
I) 141 ul 1 -t 0 1 C io I M-I I10. I E I w I

I. II4 IV -4 C13 IL. 1C 0 12 9.Cn I -,df 12 I)1L I L. I X
1 0~ IC)r QI 0 01 2 1(0 I N. I 5%. 10I 1 42c 1 0 1 0 1

I IC. I 1 1 I0 . In6t 1 . £0 4 1 "40 1 4 10 .IN.1 N. 1IN. I
4) J I II 4 I I) I 1 0 I) - I IC L 10 1 10 1

O~~ II4IVI,4I.4. / 10 4.2 1- I I
0 00 1C-4I.1 r-4> 1)I01E 1Z Z ICL IZ I- Z Ca1 1Ec I
I. Iz I 1 0 I0 L.I c I~ I = 1 1 I0 1 ~ = ~ . m 1 -
0. 1141 V4 I ca a N IN. M I I I- X ' I U- I

I I I I I I I ~ I m I

I-' I m C I ~ I I (Y I I m I

I I I - - I - I I - - I - I - - I -98-

% II I I I

oq

B-I I.-- I -- I--I V- I- - -- I -I- -

I I I 1 0 *

- IIV I EU I I

0 1 6 1 L I C. I& I I CB 1 I3 A I M. 1 C6 10

ICI2I 1 EL4 I I BI 1 0
I1lI I I 12 I m I I 1 0 B

B~ I I-M a00 1L I lI I L. I L. I c I c I c I B

Ira 1 B (I C 14. B r I r. 1 4- C 1 -I 4)C I
t ~ t I I 2 1 1 c I co 1 I: B 1 1
I It I B 1i 4-I- 1IMiL - .4) 1 I c I r I I

1= II L) I IC 4 I a 1 B)r 14 I P40 1I 0 1r I I 41
1 B II B 1 4)t I o I ow I I B .10L

I II c I =E I~ (" B1 I os I I10- I L
L BE I I C I I 4) I Q I I) B)10> 10

I lB I B -0 13 L I 13 L CL I -4r r I -r- r- 14B I
V I W I Ia I 1)V I Mz. 1 4) 1W 1 4- I)14)V 14-)1M I B
- -1 14 c I r. = - Ir I c 1 B I a I L I

o I I I I 431 v 14 r C I C J I C -3 1 C 31Q -
o ioa Io Co t . I tIo.. It-o . 1o t-4 to. 1to.Z 4g4

to) I SBi I IB I I I I I II
r I = I I I = I = I 1

02 B) 1) 1 x I C 1 0 10 I 1 0J IC
b I MI. I IC. m IC 1C I3 1 1W tO

I- B 14 I 4.3 B. L. 8 I 1 4) 1.- B
1 lie-B I I a) .) 1(. 1(- I I I cc2 I

-- I Il.-4 1- I I I mI 1 IC IC

r.0 I l 0 1 r-4 144 I to) I 14CL I 1 (1- ~4) 14 B
0 t(0 I 1 bI I24 a) I4 1Q I L I.>1- I -ba %IC I

"~I I cWIC m~. IBC I = 104.) 1 A-) 2 B I r -
V OW 1C 444t-3 1 ' 1 -0 1 04- 1 0-H421 -4421 -4214 I

-C1QC -lI-'I) 1 Lr- I L.'4 F21e- I (U. r-~B24 2V
E-4 W-. IOWI)O12 C BC I I(aCI42CBo -41-4 1 " 1 I.4

-61 1 421WO 1L I I C - - O I>

I- 1 I W 020 41 = 1-0 1 V-r IMr0> 4.qI I
I WI I- .B1 4-4 1S 4-3 1L . 4-1 I-r4C 142421

V I1H. I) " W I4L4M14)42I1V42144 2I(U.

1 : 1 1 = CL IJ > 1 02 L. 1 0 >b 1 4)- La I O a .1,.) 1

I, I I- = 1 I . 0 " I . I. 0 1 00 1 w 1 0 1I- B
I I- 0 1 0B. 104 I 0142 I 01 0. II . a. 3IC .t.I 2,

. I II IM L I c I

I a ,I I I I I I I I0 0 3 0 I

1 1 M 1 I I I I I m I

0.. -... 1I I• I I.. I . B B .

I II _-I I AW I _ I - I LO I B I I u I

• 99-

I'II . 1. C 0 I Id~ iil=- ' L B.L- IC . I_.

i I~~~~ - I ' --- ' --- I --- ' --- ' --- , --- I --- I --- '

I I I I I I I I I I I
I I I A'j I IV I I I I I
I I 1 I4)0)I) I I I I I

I. .i I I I14) I0O'-4I4) I I I 0 0 I I

I }IE 0I I I-) I I 1 4) I

I VI I"4 0 V1) I I .4- I I
1iii i i0 I0 C I I i c >% I

-. II I I I 1 I r4 L I I I w I I
0 I i IM I. I)C. I I . 1 . 0 IVEi iI--.I Il I- I 4) a I4 I I I 0) I i

.I I I V I I I .,)I i
,.I I I I I .i 4 I I 1) I I

II II 0 *a.I0 I I , a i

I I I I I - I I I I I

0 I I I I I I I I I I

- I El I I I I I- I- 1I)1 crII= r -

V I It I I I I I I I I
0 i . I . , 50.. I E-. II IV 1 1.. I
.. I I I I I I I I I I I

I I I - I - I --- I I I - -- I - I - 4 I
0) I I u I I I I I I I

4) 1 Il IL)4)14)4 10 q 8 I 1 I E1 c cI)1)4

' - I *- I1. 0 1. i C I I I, x) 10 10) I

I - I i I I (a II to m I w 0 I o I i

SI I II I.1 .. r10) I I1w I 1 41,- i4 1 I,4 %
4' I E I I I I 0 I 0-1) I ("a I I 44 () I V. 0 I

a I -1 IV IV4 1 . 1 G*a 1 -3 L a'lE -4.I. L I

0" 1- 1 0 - I c I c I -4 Iw 0 41 . I 50 i -r44 I
I ",0 I =

e - I P I)01001 I1- Ie'0I I:3=I -.0-)I 0) I

. I 1 I I I - O I tI 0 a C I E-0 I 4 I '0 I

V I - I I r I4 - I -3 .. I 1 I - I i -- I I

C's 1544 14 I i eV I .. 1)2 I.) 10.-.80) I 1 .

1 0

,I .I iII1= -I II - I -O I V V I

0.." I I I I I • I I . I =1= I I 4 I

E" .I II I 03 I . I 0I) I

lC'D " 11-,. 1 ,-. 8I ,- I ,., I , I ,-, i' 4 I , " I I

-I I . 1 4-) 1 I I 1 -I I r I
I II I j I L. I r. I x I 1 I I

I0 I II I I I ba I { f1 I 0) = I c I 0 8L I
I 0 I . I I i 1 . 1 i I

-
1 0 0 1 i - i

0- - 1 - i - a 0- i 1 0-0 - I
HI 11 I IP I I I 0 80) I

I I -
III I I .1 I I " 8 II 1 5 I I

I I I I . I I= I I4) I0 I
I I I L. I I I I01 I I

l- 8 I W) I 80) I I CO I M 4)1a.4)1 I
II I I I 34 I I I I0) I I I

.I I(V I N U I4 I I I C 0 I I V-- I

0) IWI I- 10I)P I J IL IC• I 0I(.-.0I0C I
v-I IZI II I L I 3I I~ E I4 I -C I . I
.0 I'I I I 81 81.0 IL 10,) 80)I 140I100)I I

C- I IE L I) I 1% 8 1 %0 I1)1 \ Ir I
3-. I I I- I 8 I4 I 4 -I I t I 0)C L I IC

L E [EI I- I . I 1rI 1-0I) I Ol 0 I Ol El)
IIII I 114I I I r14 I 1 I04) I L .. I "")t4 I . 0

['.'; I r .1 If. I80 3 0 1 I0 I 8 - , I C I 0 I
'.: ,. E I 1

r
0I . 80 . 10 I E I I.C .I-1C3 II= C3 I e L I

[':.: J I ~dE 1 1 d . I . t.. II0.1 IV0E€.-P)I I I
*'- I I I O I Or,4I~ O 3W4 IC I0O I .C I ONI

L*- - I I IC' I) I € I-1 I -E0I0)I0..0)IOe4lI
:"I I I I I I I I I 0 I -I0 I I
,'. I 1-18-- =

I--,11.I--, I--I--i I-I-, -{ I-"- I
4. r I I L I 1 ,I L I [I 6 . I { I 0)I 1 = I
*I I 1E I I * I * I *. I 0 0 I *= I I * 1 I ", I

8I EI(\j I CJ ICJ EC -
I.e- IC I c3 u I '- I

E,.EI E I3 --* I. 3 I : I I I 3 * I *= I

i : iEi. 8UI IU IU• I~ I I IC- I

.

%- .* o • o - .- .- .* ." .. .- .. •~~ . * *• - -.-. *. - * .•. . ..- . * . .--. . * % " .* - *.- % * ' *4 . ." ; " ' - * ' ' ' " "4; ' -. .. l -. . " " '
"

i i ' ' '

I

I cmc
1
1

4) II I)

I 1I0r
I 1) >

I-. 0
OE cc mIom44)rI

0 I M I CO, CLI 6L 7-
L. I 4U) 1.. XI)m m0

1 4) 1 4)-00 a

r -4 O I 3u
L. I- .0 CO .-) elI-
I r.4~~r L. I

c) 14.) -4 r_ I r)9

".4 r4 8 04 0 L., to
41I L. a 4) L 4J

c VI U3)
4. 0 1 4.)4 4.e,-) Ir

E-I4) I a

~~c z ia0000 4
0 ~ ~ ~ ~ X I I.2 '-\cw

cc2 a ~ S .
@2~E r6t~
a, I l Cii C O--4

L I ~ 0 0(IC JN(\

~ I '~ 4)4) .0 2

- - -I C-C. -CCU C -I

a, I i OL..WVLL101

CII 5 O~ac,-40~!Z*

o.°

effort to LSI FEP software only (ref para 1.4), this

requirement was deemed an initial failure because the system

could not function properly without VAX FEP software being

implemented on the host.

5.2.1.2 Comm Link Suport (Host OlS) - Neither DEC nor

Able Computer Technology, Inc provided a VAX/VMS software

device driver to support Lhe DR-11B Direct Memory Access

(DMA) board. This deficiency provided the single critical

limiting factor in the FEP implementation and testing.

[Note: A possible DR-I1B driver has been located
at GD Serle (Illinois) and efforts are
underway to procure a copy of this driver. I

Without a working driver on the host end of the comm

4link, most of the LSI FEP comm link software could not be

tested (ref para 2.2.1). The purpose of a network

protocol is to provide mutually agreed upon handshaking

between cooperating computers. This goal cannot be realized

when the distant end (host) is not capable of handshaking.

Although Transport Layer protocol (ref para 3.3.4)

was implemented, no attempt was made to code the Data Link

Layer protocol (ref para 3.3.2). It was not clear that

the latter protocol was ieally required and the lack of a

host driver provided no resolution of the issue.

'102

- 102 -

S.. -. ; .. ; - " '.> . ,.. . -, -. , . . .

5.2.1.3 Procedural Assistance - This function was not

' ,) implemented due to the time constraints placed upon the

project and the relatively low priority placed upon this

requirement (ref para 2.2.4.1)

5.2.1.4 Sunnort for a Line Printer - This function was not

implemented for the same reasons given in para 5.2.1.3 (ref

para 2.2.4.2),

5.2.1.5 DELNET Integration - This function was not

implemented for the same reasons given in para 5.2.1.3 (ref

para 2.2.4.3).

5.2.1.6 Physical Configuration Expansion Suooort - This

function was envisioned to have included real-time control

over configuration modification [1:67]. The actual

implementation, however, does not allow the operator to

interactively modify any system parameter or database status

variable.

This function is minimally addressed with the operator

ability to display the status of select database tables and

variables (ref para 4.4.1.17 and Appendix F).

5.2.2 White-box Testing Results -

Branch testing was applied to all branches of the

program which could be reached using keyboard inputs. These

branches included all of the terminal concentrator functions

- 103 -

9'

• 2•.%° ° • • . .o.' - , . • ,, • , - . ,, % = . " , ,,'

(ie. - interrupt handling, buffering, output, etc.)

- However, the DMA servicing code could not be reached nor

tested due to the host's inability to generate or receive

DMA traffic.

5.2.2.1 SuPoort for LCN Study - Although this function

passed its testing (ref Table 5-1), one limitation was

revealed. This limitation appears to be caused by a coding

deficiency in the LFMLHI.C library program. This program

4. (ref para 4.3.2.2) contains the 'C' run-time utilities

used for file manipulation --- among which, is the "fclose"

subroutine used to close the "LSIFEP.DAT" accounting file.

This subroutine fills a memory buffer with data

intended for a disk file. When the buffer is full, it is

flushed and written to disk. During normal processing, this

presents no problem. However, upon system termination, the

"LFEPLO.C" program issues the "fclose" subroutine call to

close the accounting file (ref para 4.4.1.24). Testing

revealed that the "fclose" subroutine does not flush the

partially filled memory buffer prior to closing the file.

Therefore, any recorded data which is memory resident at

system termination will not be written to disk.

Another problem may exist during accounting file disk

writes. The source code ensures that a large enough block

of free disk area is available before opening the

-104-0 °

"p.- I0 -

4. - .4 4 4. - - -
% ' - - -:', , . : ,< :-... . :-.., ,..- -..*- '... -. ... 4-.-...-..-.-.-.-.,,.: -. > .

"LSIFEP.DAT" file. However, this file grows dynamically and

its size depends upon terminal traffic intensity. It is not

readily apparent what happens when the bottom of the

"LSIFEP.DAT" file butts up against the front of an existing

file. Further investigation should be conducted to validate

4 that the "LSIFEP.DAT" file does not grow without bound ---

and there-by overwrite any existing files.

5.3 Summary -

This chapter described the testing methodologies used

to validate the LSI FEP software. In it, the

requirements-based testing and program-based testing

Sstrategies were defined. The results of both testing

approaches on the LSI FEP software were discussed.

Limitations of the testing phase were described and

generally attributed to the lack of a VAX/VMS supported

device driver for the DMA interface.

One potential source for the driver had been located

and efforts were underway to procure the driver from that

source.

-105-

. . .. - -,=# . . -. . - - -= = - .- , .-. -....

.'. - . .. , . -. 4 " . .,. J .. ,, 'V . '. -,, ., , -.. .. % ., = ,. -. . . , .,

.% .4

-,'" CHAPTER 6

CONCLUSION

. 6.1 The Problem Revisited -

The problem investigated during this project was to

design, implement, and document the LSI-11/23 portion of the

Communications Front End Processor (FEP) system (ref para

1.3).

This investigation began with an analysis of the

functional requirements which included prioritizing the

requirements for the purpose of ordering the implemention

effort. Design decisions and tradeoffs were examined in the

light of these priority assignments. Next, network design

issues were discussed using the ISO Reference Model as a

departure point for the protocol layers. Software design

and implementation issues were then considered with

-106-

%. . . .- * d ...lb b " a=. . .. g i,,a] , ,* .. 4 , 4.

capabilities and limitations examined and the software

." structure defined.

This investigation ended with a test and evaluation

phase conducted using both requirements-based and

program-based testing methods.

6.2 Accomplishments -

Specific accomplishments of this thesis effort can be

classified as either hardware or software improvements.

6.2.1 Hardware Improvements -

The major hardware improvement was the physical

placement of the DMA interlink boards within the VAX-11/780

and LSI-11/23 computers and connecting these boards via the

DMA cabling. Other accomplishments included insertion of

the four serial port DLV11-J card (ref para 2.3.4) and

replacement of the two standard M8044 Plessey memory boards

(together addressing memory locations 0 - 377777 octal) with

a single MSV11-E [20:468-487) card which allowed full

LSI-11/23 addressing from 0-777777 octal.

- 107 -

.4
9..

6.2.2 Software Improvements -

Software improvements included accomplishment of the

middle phases - Design, Coding, and Testing - of the

-" Software Development Life Cycle model (ref para 1.5.1).

These phases proceeded from the Requirements Analysis and

Specification phases accomplished in a previous [1] thesis

effort.

Specific software enhancements included the coding and

testing of the Terminal Concentration C ref Chapter 4)

features as well as the Accounting data recording features

for the Local Computer Network study requirement. Code was

written to service the LSI-11/23 end of the DMA interface,

but resources were not available to test this software.

6.3 Discussion -

This section summarizes the thesis investigation from

the point of view of designer and implementer. Presentation

chronacles the problems (and resolutions) that occurred at

various points.

6.3.1 Seove -

The first hard decision to be made was limiting the

scope of this investigation to implementing the LSI-11/23

- 108 -

-',1 4'"' *42* Z **" *" * " -" * V_ .% . '', "..' ," - "- , ".-. ... ,/ '

portion of the FEP system. There is a tendency for every

builder to want to create an entity which is complete unto

itself. It is very difficult to confine oneself to building

a piece of some whole that will not be realized for some

time. This project provided the challenge of paring the FEP

implemetation down to a size for which a realistic effort

*, could be expected to produce a reasonable chance of success.

6.3.2 Requirements Prioritization -

JOne of the early major decisions concerned assigning

certain requirements into the low priority category (ref

para 2.2.4). Early expectations were that all but the low

priority functions would be implemented. Tagging a function

as low priority was, in effect, passing-the-buck for its

ultimate implementation to a follow-on thesis investigation.

It was paramount, therefore, that the "nice to have"

functions be properly identified and placed in the low

priority class.

6.3.3 Design Decisions and Tradeoffs -

Decisions made immediately after function priority

selection shaped and molded the rest of the implementation

effort. These design decisions provided the guiding

framework which gave eventual direction to the software

coding. Each decision funneled the next issue into an

;.ncreasingly narrow path toward resolution. It was

* " - 109-

imperative that the early design decisions be correct

because flexibility for change grew smaller with each

successive decision.

6.3.4 Network Design and Protocol Issues -

The network design was accomplished at too early a

stage in the project. It proceeded from a traditional

network approach and resulted in what may be an

over-designed network. The primary reason for this was

that, at this early point in the project, the capabilities

and requirements of the Able Computer Technology, Inc.

Interlink DMA interface were not fully understood.

Even now, any increased knowledge felt by the author in

this respect continues to exist only as a subjective opinion

which cannot be put to the test until a host device driver

becomes operationally available. For this reason, Chapter 3

was allowed to remain as written and its evaluation deferred

pending arrival of the testing tools.

6.3.5 Software Design and Implementation -

Chapter 4 chronicled a period of time in which author

experienced the alternating extremes of exhilarating

satisfaction and nagging frustration. In several instances,

critical code fragments that were expected to require many

rewrites worked flawlessly the first time. On other

'. - 110-

4'

4*I vt* **.' * . .. """ """..... . "" " "" " "" " ". .. " " * "" "" '

occasions, errors which were as dumb as they were

.- . transparent delayed the project for days.

6.3.6 Software Test and Evaluation -

It seems that no matter how strenuously one advocates

testing as a cycle-long requirement, it always seems to be

deferred until finally addressed at the eleventh hour of a

software project. Although top- down implementation of the

code segments protects against this to a large degree, it

-< does not completely eliminate this panic mode of testing.

Throughout this implementation, testing seemed to lag behind

production, followed only by documentation in the race of

procrastinations.

0

6.4 Recommendations -

Several concrete recommendations emerged from this

study as follows:

6.4.1 DR-11B Device Driver Installation -

Without a working device driver on the host (VAX) end

of the DMA link, this project would seem to be incomplete.

As stated in Chapter 5, a potential DR-11B device driver has

.been located and and a copy of the driver source code has
br
been requested from the writer. This driver currently only

i- 111 -

r ._.'_ ." _.._ = .'. - -_ _ _ ".' -'- -_ , - a a-.. ".,..-..-..- -

handles word mode data transfers for the VAX-11/780 and

would have to be modified to provide the expanded

capabilities of block mode transfers for the FEP

application.

This modification does not appear to be a trivial

exercise. A firm grasp of the VAX assembly instruction set

and I/O data base will be required as well as a good

understanding of the DMA programming.

The driver should be examined upon arrival and modified

by a qualified programmer to address the needs of the VAX

FEP.

6.4.2 Data Link Protocol -

As stated in Chapter 5, the Data Link Protocol was not

implemented primarily due to the uncertainty of its

requirement. This aspect should be further investigated

once the DR-11B driver becomes operational.

6.4.3 Buffer Sizing -

The program buffer sizes (200 characters for terminal

traffic and 2000 characters for node traffic) were chosen

arbitrarily (ref para 3.3.3.3 and para 3.3.4.1). These

sizes may be adjusted based upon further testing.

-112-

* - . . °*- . * * * b.-

6.4.4 Number of Terminals -

° At present, the LSI FEP will support seven dedicated

". VT-100 interactive terminals and one VT-100 terminal which

": can operate as the SOC or as the eighth interactive

terminal. The requirements specify that this configuration

should be expandable to sixteen terminals. The LSI-11/23

unibus structure should be further investigated to ensure

that enough I/O port addresses and interrupt vectors exist

for this expansion.

6.4.5 LFMLHI.C File Manipulation Limitation -

As discussed in Chapter 5, the "fclose" function does

not flush the memory buffer of data destined for disk

writing prior to closing the file. This deficiency should

be corrected. At the same time, thk potential 'write

without bound' question posed in Chapter 5 should also be

investigated.

6.4.6 The Completed DEL FEP -

Finally, the whole to which this thesis effort is only

a part should be concluded. Namely, the remaining VAX FEP

software should be designed and implemented. In addition,

the low priority tasks (deferred from implementation in this

thesis) should be re-examined and implemented.

-'.5' - 113 -

S.J"

t " "-". ' "* "' "a . .."" ° -. . " ° . ., " " t" ''
° °

°, " • ' , ,e ,.- .. . , " " , . . ' ,,, ,, " - . ' '- . ' . - , ' - . " ° " . . , f . ' , . ' ' " . '_ ,' . ' , -. ' , - . , .' . ' -' , ,. .' .- ',, .,' e . -,, , , ,.a

BIBLIOGRAPHY
4.

4%'

1. Gnadt, Larry Wm. Desgn j= Implementation 2f a
Fron-En Processor System f=or. igi Egj pgmnjmta
C gt VAX-111780. MS Thesis; Air Force
Institute of Technology, School of Engineering,
Wright-Patterson AFB, Ohio, 1982.

2. Plessey Peripheral Systems. G .Infomti.n
Users Manual MA-703525 Rev A; Irvine, California;
8 May 1980.

3. Plessey Peripheral Systems. PM-MFV11A
Multifunction Board Manual. Users Manual MA-703510
Rev A; Irvine, California; April 1981.

4. 1 Digital Equipment Corporation. Microcomputer
Interfaces Handbook. Reference Manual; 1980.

5. Tanenbaum, Andrew S. Computer Networks En lewood
Cliffs, New Jersey; Prentice-Hall, Inc. 1981.

6. Seward, Walter D. Lecture material distributed in
EE6.54 (Computer Communications Networks) and in
EE7.54 (Advanced Topics in Computer Networks).
School of Engineering, Air Force Institute of
Technology, Wright-Patterson AFB, Ohio. 1983.

7. Digital Equipment Corporation. RT-11 Software
.Support Mgn , Order No. AA-H379A-TC; Computer
software documentation. Maynard, Massachusetts.
1981.

.4

8. Digital Equipment Corporation. Introduction to
Rr-11, Order No. AA-5281B-TC; Computer software
documentation. Maynard, Massachusetts. 1981.

9. Digital Equipment Corporation. RT-11 System Users
SGuide, Order No. AA-5279B-TC; Computer software

documentation. Maynard, Massachusetts. 1981.

10. Digital Equipment Corporation. RT-11 System
Messages Manual, Order No. AA-5284C-TC; Computer

.
4, - 114 -

I
,%
.5.

, ,•, % "% . . " . • ° • • ..- , . . . - , - ° ., 5•.•. . , . % - . % % - ' - '

/ . h% , . " , . ':,.'. . ., . ..-.. '.. . . - , -, , , ,,

software documentation. Maynard, Massachusetts.

1981.
11. Digital Equipment Corporation. RT-11 Master Index,

Order No. AA-H380A-TC; Computer software
documentation. Maynard, Massachusetts. 1981.

'I 12. Digital Equipment Corporation. RT- 1 Documentation
Directory, Order No. AA-5285F-TC; Computer
software documentation. Maynard, Massachusetts.
1981.

13. Digital Equipment Corporation. PDP.11 Keypad
Editor User's Guide, Order No. AA-H583A-TC;
Computer software documentation. Maynard,
Massachusetts. 1981.

14. Digital Equipment Corporation. RT-11 Programmer's
Reference Manual, Order No. AA-H378A-TC; Computer

S software documentation. Maynard, Massachusetts.
1981.

15. Digital Equipment Corporation. PDP-11 MACRO-I1
Langujjag=Ke Rren Manua, Order No. AA-5075B-TC;
Computer software documentation. Maynard,
Massachusetts. 1981.

16. Digital Equipment Corporation. RT-11 System
Release Notes, Order No. AA-5286D-TC; Computer
software documentation. Maynard, Massachusetts.
1981.

17. Digital Equipment Corporation. RT-11 Installation
AGA System G a Guide, Order No.
AA-H376A-TC; Computer software documentation.
Maynard, Massachusetts. 1981.

*.- 18. Able Computer Technology, Inc. Preliminary User's
_ Guide to INTERLINK/LSI; Computer hardware

documentation. Irvine, California. March 1980.

19. Able Computer Technology, Inc. Peliminary User's
Guide 1o INTERLINK/UNI; Computer hardware
documentation. Irvine, California. April 1979.

20. Digital Equipment Corporation. Microcomputers and
Memories; Handbook. Maynard, Massachusetts.
1981.

21. TELECON Systems. TELECON 'C' Users Manual.

Software documentation. San Jose, California.

- 115 -

9,. ""''''"* " %b %.*ai' "%. "--- -"- "-". % ' "- "- ' "
' "" ' '%",/

" •"" >'"" , ""
.'.. ~ ~ - * ~.. * ~ - * N . S. d . S1 S. .. S. .

*' 1982

22. Kernighan, Brian W. and Dennis M. Ritchie. The
- C Prgrmming Lgnguage. Prentiss Hall Software

Series Textbook. Prentice-Hall, INC. Englewood
Cliffs, New Jersey. 1978.

23. Hartrum, Thomas C. t__ mpiler User's Manual.
Course Handout. Air Force Institute of Technology.
Wright-Patterson Air Force Base. Dept of
Electrical Engineering. 1982

24. Digital Equipment Corporation. Programming in
VAX-11 'C'. Software manual. Order No.
AA-L370A-TE. Maynard, Massachusetts. May, 1982.

25. Zelkowitz, Marvin V. "Perspectives on Software
Engineering", ACM ComUtin Surveys. Vol. 10, No.
2 (pp. 197-216). June 1978.

26. Boehm, B., McClean, R., and Urfrig, D. "Some
Experience with Automated Aids to the Design of
Large Scale Reliable Software." International
Conference _ Reliable Softwjare. (pp. 105-113).
ACM, New York. 1975.

27. Hamilton, M. and Zeldin, S. "Higher Order
Software - a Methodology for Defining Software".
IEEE Transactions 2a Software EngineLering. Vol.
2, No. 1 (pp. 9-32). March 1976.

28. Peters, Lawrence J. Software Design: Methods and
' In_ igJ i. Yourdon Press. New York. 1981

29. Krieger, M.S. and P. J. Plauger. "C Language's

Grip on Hardware Makes Sense for Small Computers."
ElgtF rni . May 8, 1980.

30. Whitesmiths, Ltd. bitmiths Software Caalogue.
Spring 1981 edition. Whitesmiths, Ltd. New York,
New York. 1981.

31. Howden, William E. "A Survey of Dynamic Analysis
Methods." J=IE Tutorial o= Software Iesting and
Verification Technigues. pp 185-206. 1978.

- 116 -

INDEX

ACK 3-8 to 3-9

CLIB11.MAC 4-8

DECs a .e * e * * o 2-19, 5-6
DEL a . 1-2, 2-4, 2-26 to 2-27
DELNET o 2-4, 2-13
DLFH 3-8 to 3-9
DLV11-J 2-9, 2-20, 6-2
DMA 1-2, 1-4, 2-3, 2-6, 2-20,

2-24, 3-3 to 3-4, 3-7 to 3-8,
3-13, 4-5 to 4-6,
4-14 to 4-20, 5-6,
5-8 to 5-9, 6-2 to 6-3

DMACSR 4-20
DMATTx 4-19 to 4-20DR-11B s5-6

N" EIA 2-8
FEP o 1-1 to 1-3, 1-5, 1-12v

2-1 to 2-10, 2-13 to 2-14,
2-17, 2-20, 2-24 to 2-25,
2-27, 3-1, 3-3, 3-8, 3-14,
3-16, 4-1 to 4-2, 4-6 to 4-9,
4-12, 4-15, 4-19,
4-21 to 4-24, 5-2,
5-5 to 5-6, 5-9, 6-1, 6-4,
6-8

1/0 2-12v 2-159 2-18v

2-20 to 2-22, 2-24, 4-11
InChar 4-5, 4-8, 4-10, 4-12,

4-16 to 4-18ISO* a 3-4

LCNe 2-2, 2-4, 2-10, 4-23
LFEPHI.C e 4-9, 4-21
LFEPIOC e .s. * w s e * & * s 4-7

LFEPLO.C e 4-8, 4-21, 5-8
LFMLHI.C 5-8
LFMLHI.MAC4-8 to 4-9
LFMLLO.MAC 4-8
LLM *.e 3-2, 3-4, 3-7 to 3-9
LPM . &. 3-2
LSI 2-1, 2-3, 2-6, 2-8 to 2-13,

Index-1
S

,

-.- .
4 - * -* *

2-15 to 2-16, 2-19 to 2-20,
2-24 to 2-28, 3-2,
3-8 to 3-9, 3-11, 3-14,
4-1 to 4-2, 4-6 to 4-9, 4-12,
4-15, 4-17, 4-19,
4-21 to 4-24, 5-5 to 5-6,
5-9, 6-1 to 6-3

LSIFEP.C e o e e e a e e 4-5
LSIFEP.DAT 4-10, 4-21, 4-23, 5-8 to 5-9
LSIFEP.SAV 4-7
LSIFEX.SAV 4-6 to 4-7
LSM . s e * e e e a a 9 . o o 3-2
LTM . * e * - * e e e e - * * 3-2, 3-7

MMU . o o a . e a s. . . 2-21, 2-24
MSV11-E e s o ' a . s e . 6-2

NAK 3-8
NBT e 4-6, 4-10, 4-14, 4-17, 4-19,

9' 4-22
NBUFF.MAC 4-7 to 4-8
NodeChar 4-6 4-8, 4-10, 4-14,

4-1I to 4-20

OutChar 4-5, 4-8, 4-10, 4-18, 4-20

PAD .* a * o e . . o o s 9 a 3-7
PARI o . o 4-7, 4-9
PIDa o o e 3-11

PM-MFV11A 2-8 to 2-9, 2-20
PST . o s 4-6, 4-10 to 4-11, 4-17,

4-19 to 4-20, 4-22
.. PSW *.a e 4-11t 4-21

RBUF * 2-15 to 2-16, 4-11RCSR 0 0 a 0 a 0 0 0 0 0 a 4-11I

RS232 2-8
RT-11 2-6, 2-14, 2-21 to 2-22,

2-24, 4-4, 4-6, 4-21
RT11SJ 4-6
RT11XM e 4-6, 4-10 to 4-11

"" 0 0 aJa 2-1 4

SLP o . a 3-2
SOC 2-20, 3-2 to 3-3,

4-9 to 4-12, 4-14 to 4-15,
'-OH4-17, 4-19 to 4-23
STDIO. H *.a 4-7

TBUFF.MAC . . . o 4-8
TDM 3-5

Index-2

;. :.,.,',,, ...,.-....'...,'..'. .,,'. ','4'-..,',,.".". .-.. ".. . . .,.. .. .".... .","

." THT e 4-6.. 4-18
TID 3-:11, 4-11, 4-19."TTx 4-19 to 4-

UNIBUS 2-20

VAX 2-2 to 2-3, 2-6 to 2-8, 2-10p
2-12, 2-20, 2-24, 3-2 to 3-3,
3-9, 3-11, 5-6, 5-9, 6-2, 6-8

VLM 3-3 to 3-4, 3-7, 3-9
VMS * * & e a e s a a o e e a 2-3v 2-6, 2-8, 3-3p 5-61 5-9

.,VSM 9 i 3-3
VT-100 e e * a * . * . e * 0 a 2-7, 2-19, 3-13

XBUF 2-16 to 2-17, 4-11, 4-18
XCSR e . . 2-16 to 2-17, 4-11, 4-18
XM 2-14, 2-21 to 2-22,

2-24 to 2-25

.I.

.1

4

.,

, Index-3

"S'

'#'

V. 5*

.'m '. -. . . '. ". % .
•.
=. * .- % ° . % " " % " ." ," % ' • " - " " " ' • " " "-. " "' . .

1_.

APPENDIX A

SOFTWARE REQUIREMENTS ANALYSIS

%

This appendix reproduces the Designer Perspective

Software Sub-System Requirements indentified in ref [1].

This model served as the departure point upon which the

current thesis effort progressed.

A-

%

-,

.4"

Requirement Description
--

I Local Computer Network
1.1 Two Processors
1.2 Communications Link
1.3 Software On Each Processor
1.3.1 Front-End Software
1.3.1.1 Support User Terminals
1.3.1.1.1 Virtual Link
1.3.1.1.1.1 Packet Interlock
1.3.1.1.1.2 Sequence Number

* 1.3.1.1.2 Information Routing
1.3.1.1.2.1 Logical Link
1.3.1.1.2.1.1 Same Processor
1.3.1.1.2.1.2 Between Processors
1.3.1.1.2.2 Physical Link
1.3.1.1.2.2.1 Between Processors
1.3.1.1.3 Message Assembly/Disassembly
1.3.1.1.3.1 Header
1.3.1.1.3.1.1 Source Terminal
1.3.1.1.3.1.2 Destination Terminal
1.3.1.1.3.1.3 Message Number
1.3.1.1.3.1.4 Message Length
1.3.1.1.3.2 Message Text
1.3.1.1.3.2.1 Alpha-numeric Characters
1.3.1.1.3.3 Transmission Protocol
1.3.1.1.3.3.1 Logical Link
1.3.1.1.3.3.1.1 Source Node
1.3.1.1.3.3.1.2 Destination Node
1.3.1.1.3.3.1.3 Message Number
1.3.1.1.3.3.1.4 Queue Control Information
1.3.1.1.3.3.2 Physical Link
1.3.1.1.3.3.2.1 Source Processor
1.3.1.1.3.3.2.2 Destination Processor
1.3.1.1.3.3.2.3 Message Sequence
1.3.1.1.3.3.2.4 Link Mode
1.3.1.1.3.3.2.5 Queue Length
1.3.1.1.3.3.2.6 Message Space
1.3.1.1.3.3.2.7 Queue Control Information
1.3.1.1.3.3.2.8 Checkfield
1.3.1.1.3.3.2.9 Message Terminator

A-2

I.. f I i% *' Ii Iih/ ~ iJ "~~
. l t . . ' '

. ,

Requirement Description

1.3,1,1.4 Link Assignment Strategy
1.3.11.4.1 Multiple Links
1.3.11.4.2 Multiple Link Types
1.3-1.2 Perform User Tasks
1.3-1.2.1 Operating System Tasks
1.3-1.2.2 Special Functions
1.3.1.3 Comm Link Management
1.3.1.3.1 Control Comm Link
1.3.1.3.1.1 Physical Control
1.3.1.3.1.2 Link Mode
1.31.3.1.2.1 Message Mode
1.3.1.3.1.2.2 File Mode
1.3•1,3.2 Assemble Comm Link Message
1.3.1.3.3 Transmit Comm Link Message
1.3,1,3.4 Receive Comm Link Message
1.3,1,3.5 Disassemble Comm Link Message
1.3,1,3.6 Error Check Messages
1.3.2 Host Software
1.3.2.1 Support User Terminals
1.3.2.1.1 Virtual Link
1.3.2.1.1.1 Packet Interlock

9 1.3.2.1.1.2 Sequence Number
1.3.2.1.2 Information Routing
1.3.2.1.2.1 Logical Link
1.3.2.1.2.1.1 Same Processor
1.3.2.1.2.1.2 Between Processors
1.3.2.1.2.2 Physical Link

- 1.3.2.1.2.2.1 Between Processors
1.3.2.1.3 Message Assembly/Disassembly
1.3.2.1-3.1 Header
1.3.2.13•1.1 Source Terminal
1.3.2.1.3.1.2 Destination Terminal
1.3.2.1 3.1.3 Message Number
1.3.2.1,3.1.4 Message Length
1.3.2.1,3.2 Message Text
1.3.2.1.3.2.1 Alpha-numeric Characters
1.3.2.1.3.3 Transmission Protocol
1.3.2.1,3.3.1 Logical Link
1.3.2.1.3.3,1.1 Source Node
1.3.2.1,3.3.1.2 Destination Node
1.3.2.1.3.3.1.3 Message Number
1.3.2.1.3.3.1.4 Queue Control Information

A-3

Requirement Description
--

1.3.2.1.3.3.2 Physical Link
1.3.2.1.3.3.2.1 Source Procebsor
1.3.2.1.3.3.2.2 Destination Processor
1.3.2.1.3.3.2.3 Message Sequence
1.3.2.1.3.3.2.4 Link Mode
1.3.2.1.3.3.2.5 Queue Length
1.3.2.1.3.3.2.6 Message Space
1.3.2.1.3.3.2.7 Queue Control Information
1.3.2.1.3.3.2.8 Checkfield
1.3.2.1.3.3.2.9 Message Terminator
1.3.2.1.4 Link Assignment Strategy
1.3.2.1.4.1 Multiple Links
1.3.2.1.4.2 Multiple Link Types
1.3.2.2 Perform User Tasks
1.3.2.2.1 Operating System Tasks
1.3.2.2.2 Special Functions
1.3.2.3 Comm Link Management
1.3.2.3.1 Control Comm Link
1.3.2.3.1.1 Physical Control
1.3.2.3.1.2 Link Mode
1.3.2.3.1.2.1 Message Mode
1.3.2.3.1.2.2 File Mode
1.3.2.3.2 Assemble Comm Link Message
1.3.2.3.3 Transmit Comm Link Message
1.3.2.3.4 Receive Comm Link Message
1.3.2.3.5 Disassemble Comm Link Message
1.3•2.3.6 Error Check Messages

2 Host Operating System
2.1 Multi-Programmed Environment

* 2.2 Mass Storage
2.3 Comm Link Support
2.4 High Level Language

i 3 FEP Operating System
3.1 Support for Maximum Terminal Population
3.2 Mass Storage
3.3 Comm Link Support
3.4 High Level Language

A

i: "'"A- 4

U'

SRequirement Description

4 Consistent User Interface
4.1 Provide "Single User" Environment
4.2 Consistent With VAX/VMS Operation
4.2.1 Single-User/Host Operations
4.2.2 Control/Management Operations
4.2.2.1 Terminal CONNECT

* 4.2.2.2 Terminal DISCONNECT
4.2.2.3 Command Interpreter
4.3 Procedural Assistance
4.3.1 Single-User/Host Operations
4.3.2 Control/Management Operations
4.3.2.1 HELP Operation
4.4 Easy to Learn and Use
4.4.1 Control/Management Operations
4.4.1.1 HELP Operation
4.4.1.2 Terminal CONNECT
4.4.1.3 Terminal DISCONNECT
4.5 Processing Support Invisible to User
4.5.1 Single-User/Host Operations
4.5.2 Control/Management Operations

5 Operating Environment Compatibility
5.1 Physical Plant Compatibility
5.1.1 Power Source
5.1.2 Temperature Range
5.1.3 Humidity Range
5.2 Academic Compatibility
5.2.1 Unattended Operation
5.2.1.1 Startup Procedure
5.2.1.2 Shutdown Procedure
5.2.1.3 Asynchronous Intermediate Processing
5.2.1.3.1 User Level Messages
5.2.1.3.1.1 Requests
5.2.1.3.1.2 Responses
5.2.1.3.2 System Level Messages
5.2.1.3.2.1 Entries From FEP Console
5.2.1.3.2.2 Responses to System Requests
5.2.1.3.2.3 System Level Status
5.2.1.3.3 Queueing System
5.2.1.3.3.1 Servers: Logical Nodes
5.2.1.3.3.2 Message Movement Strategy
5.2.2 Support for 8 Interactive Terminals
5.2.3 Support for Line Printer

A-5

*. ... - ,,. --.. ... ,.,-... - , . , , -

,'.

Requirement Description

5.2.4 Support for Study of LCN
5.2.4.1 Collect Performance Data
5.2.4.1.1 System Level Status
5.2.4.1.1.1 Queue Overflow
5.2.4.1.1.2 Comm Link Errors
5.2.4.1.2 Terminal Session Statistics
5.2.4.1.2.1 Session Number
5.2.4.1.2,2 Terminal Number
5.2.4.1.2.3 Connect Date
5.2.4.1.2.4 Connect Time

_ -5.2.4.1.2.5 Disconnect Date
5.2.4.1.2.6 Disconnect Time
5.2.4.1.2.7 First User File Record
5.2.4.1.2.8 Last User File Record
5.2.4.1.3 User Session Statistics
5.2.4.1.3.1 User Record Number
5.2.4.1.3.2 Session Number
5.2.4.1.3.3 Username
5.2.4.1.3.4 Current System
5.2.4.1.3.5 Logon Time
5.2.4.1.3.6 Logoff Time
5.2.4.1.3.7 Number Messages Input
5.2.4.1.3.8 Number Characters Input
5.2.4.1.3.9 Number Messages Output
5.2.4.1.3.10 Number Characters Output
5.2.4.1.3•11 Number Messages Sent to Printer
5.2.4.1.3.12 Number Characters Sent to Printer
5.2.4.1.3.13 Total Printer Time
5.2.4.1.3.14 Total Number Printers Assigned
5.2.4.1.4 System Queue Statistics
5.2.4.1.4.1 Queue Name
5.2.4.1.4.2 Current Length
5.2.4.1.4.3 Message Number
5.2.4.1.4.4 Event Time
5.2.4.1.4.5 Event Code
5.2.4.2 File Transfer
5.2.4.2.1 Transfer To/From Host
5.2.4.2.2 Disk Media
5.2.4.3 Peripheral Sharing
5.2.4.3.1 Route Output To Printer
5.2.5 DELNET Integration
5.2.5.1 Single-User/DELNET Operations
5.2.5.2 Control/Management Operations

A-

A-6

-. --. i.i. -5-. S. , .- - . - " i .

Requirement Description

6. Supportability
6.1 In-House Maintenance6.1.1 Hardware

6.1.2 Software
6.2 Expansion
6.2.1 Modular Software
6.2.1.1 Functions
6.2.1.2 Functionally Cohesive
6.2.1.3 Hierarchical Structure
6.2.1.41 Loosely Coupled
6.2.2 Physical Configuration
6.2.2.1 Terminals76&2,2,2 Processors
6.2.2.3 Comm Links
6.2.3 Inspect Configuration
6.2o4 Modify Configuration

7 Minimum Cost
7.1 On-hand Components

8 Data Security
8.1 No Requirement

-A-

.

APPENDIX B

LSI FEP STRUCTURE CHARTS

This appendix contains the structure charts used in

*.i- designing the LSI FEP software modules.

DIRECTORY OF STRUCTURE CHARTS

Module Nbr Module Name Page

01 Main B- 2
1 Initialize System B- 3

' 1.2 Initialize Interrupts B- 4
1.2.9 Service DMA Interrupts B- 5

2 Perform Normal Activities B- 6
2.1 Service Input Queues B- 7

2.1.2 Move Message to node TTxDMA B- 8
2.3 Service Node Queues B- 9

2.3.1 TTx-to-DMA Output B-10
2.3.2 DMA-to-TTx Output B-1i

B-1

*4 * °4 °P • o ~ p

B. 1 Modujle 0-Main-

I Main
-' I 0

Intalz PefrIemnt
.9~ys e No ma System___________

Aciite

/ 2

.9. B-2

-,O - , .-

B.2 Module 1 -Initialize System-

Initialize
ISystem

PST Intrut

1 1 1.2

i ineInt S

B-3

B.3 Module 1.2 -Initialize Interrupts-

IInitialize
IInterrupts

1.2 1

Seric H__Service_

Temial H1\.M

Interupt II!0nerut

1 . 1. .

< -- -

8 cois

der iecty Inerup Iservice ruie
ITriale IVOKE by DMAT1X oeatn

I1/ Inerpsite\rIIntrrpts.

I IIII B-4

B.4 Module 1.2.9 -Service DMA Interrupts-

IService

IDMA
IInterrupts

1.2.9 1

Set up forI
IDMA Input

B- 5

B.5 Module 2 ---Perform Normal Activities-

IPerform
INormal
IActivities

2

2.1 2./.

=idxint \P\n
n/ ne it B

/B-6

B.6 Module 2.1 - Service Input Queues

I I

"-{ I Service
I Input I
I Queues

.-:- I2.1 1

? ./ \
-- / \ \

." I \ \ i
/ \ ~

-" I \ \
-'"/ \ \,n

,I-I II

I Evaluate '' Move Ms8g
. I SOC Input I to node

"" I I TTx-to-DMA

2.1.1 I 2.1.2
_ _ _ _ _ _ - I I _ _ _ ____ _1 _ _ _

-i = index into PST
n = index into NBT

aB.-

*°B-,

** * *- -

B.7 Module 2.1.2 - Move Message to Node TTxDMA -

* 1 Move Msg
Ito node
ITTx-to-DMA

I "I

2.1.21

" / \

/ a

-'-i ,Heoanod

2.12. X-7 .
r = o \

/

I II \

1 enr Heade a noequu

2..2/ B\ \

SI Build____ I _Gather ___I

" a =address of THT
) r =reason for gathering statistics

(1I= entry into a node queue)

.,'

*" B- 8

-I

, %%

B.8 Module 2.3 - Service Node Queues -

'.°

%-.I I

, Service
, Node
Queues I; -I I

1 2.3i _ _ _ _ I
:-:/ \

*""/ \
/ \ \

/ \ iJ

. /\

.II ,

" TTx-to-DMA I DMA-to-TTx
Output I I Output* I I I

2.3.1 I 1 2.3.2

i =index into PST

4.B-

"o8-9

, 4 .* V 1 %- -9V .

B.9 Module 2-3.1 - TTx-to-DMA Output -

I ,
I I

I TTx-to-DMA I
Output

2.3.1 1
_ _ _ _ I

I

I a

I
I ~

I r= 2

l l

' Gather
I Statistics I
I II I\.7 I

a address of message in NodeChar
r reason for gathering statistics

(2 exit from a node queue)

IB

gt

.., .."., . . 4 ,;,2 ,€ . .' j...."g '.. _,. ,,' . .'-...-. : .--.. ';.. N-B-2. 10.: : ;

B.1O Module 2.3.2 - DMA-to-TTx Output -

'.., . .-.

" DMA-to-TTx
' Output

2.3.2 1
I I

I'
I t a
I, I

I a

- ~I I rI

r 2

I Gather
I Statistics

I_\ IX-7

a = address of message in NodeChar
r = reason for gathering statistics

(2 exit from a node queue)

4.B1

2 '

,p

-4 - -i

.4a~D°

-S:

' .

APPENDIX C

LSI FEP DATA DICTIONARY

This data dictionary is divided into two parts. The

first part is a dictionary of global data items and

structures (Data Item Entries begin on page C-2) from

program LFEPLO.C while the second part is a dictionary of

functional modules (Functional Modules begin on page C-20)

from the same program. Each part contains a short

introduction and a table of contents for the section.

'F

C-1

' a,. .., - . . .%. , -.... .. , ,.

-Z 7. 77 ~ . ~ % * . .- *~****~ . ..- . -~ . *

C.1 Data Item Entries-

This section contains those data items and entries

which are global in nature -that is, they are referenced by

more than one program module.

Paragraph Data Item Page

0.1 Data Item Entries (Heading) C- 2

C.1.1 AbortFlag C- 3
C.1.2 DMABusyFlag c- 4
C.1.3 DMAwc C- 5
c.1.~4 Endldx c- 6
C.1.5 FileOpenFlag C- 7
c.1.6 GoDMAFlag C- 8
C-1.7 InChar C- 9

c.1.8 LastMsgSeqNbr C1
0.1.9 NBT C1
0.1.10 NBTCharCount C-12

.2C.1.11 NodeChar C-13
04 .1.12 OutChar C-14L
C-1.13 PST C-15
C.1.14 PSTCharCount C-1 6
C-1.15 Startldx C-17
C4 .1.16 Stopldx C-18
C-1.17 THT C-19

C- 2

a-
: c.1 .1 Abrt -a

Item Name: AbortFlag

Data Type: Boolean Integer

Item Size: 2 bytes

Where written: Where read:

SOCInterruptServiceRoutine j PerfNormalActivities

Description: AbortFlag is initialized to NO by the 'C'
compiler. While it remains equal to NO
(where NO = 0), LSIFEP.C continues to
execute. When the operator, using the SOC
terminal, keys a 'control-C' (^C) input,
then the software sets AbortFlag = YES
(where YES = 1) and initiates the
TermSystem functions.

* C-3

*%r.% *, ~ . . V 4 X * . . V . - * . . - - . ** . . - .
. * - . , . *.*g ' * ,hlt 4 . - '

714.:

C.1.2 DMABusvFlag

Item Name: DMABusyFlag

Data Type: Integer

Item Size: 2 bytes

Where written: I Where read:

InitSystem I TTxToDMAOutput
TTxToDMAOutput IDMAlnterruptServiceRoutine
DMAlnterruptServiceRoutine ISetUpForlnputDMA
SettjpForlnputDMA

Description: DMABusyFlag indicates the status of the
* DMA channel. Permissable values are as

follows:

0 =DMA channel not busy
1 =DMA word (mode) input (VAX to LSI) is expected
2 = DMA block (mode) input (VAX to LSI) is expected

-~ 3= DMA word (mode) output (LSI to VAX) in progress
4 =DMA block (mode) output (LSI to VAX) in progress

-C-

7,L7. ,

C-1-3 DMAwc-

Item Name: DMAwc

Data Type: Integer

Item Size: 2 bytes

Where written: IWhere read:

DMAnterruptServiceRoutine IDMAlnterruptServiceRoutine
ISetUpForlnputDMA

Description: DMAwc is used to store the word count of
the current DMA block transfer.

-C-5

-- A ,

C.1 .4 End.Id.&

Item Name: Endldx

Data Type: Integer

Item Size: 2 bytes

Where written: fWhere read:

SrvNodeQueue ITTxtoDMAOutput
DMAtoTTxTransfer

Description: Endldx is used as an index into the
NBT to mark the array element offset
of the last character to be moved
in the current message.

C-6

-- ~ ~ ~ ~ ~ ~ ~ ~ j 7%------5--S--- W

C.1 .5 Fi.1.lteJ...ag-

J.

Item Name: FileOpenFlag

Data Type: Integer
9.

Item Size: 2 bytes

Where written: I Where read:

^, I

InitSystem

Description: FileOpenFlag is a boolean flag that
describes the status of the file open
attempt on the accounting statistics
file. Possible values include:

NO = 0 = file is not open
YES 1 1 = file is open

0

5-

i.5

-°

C-7

44

C.1.6 GoDMAFlag -

Item Name: GoDMAFlag

Data Type: Boolean Integer

Item Size: 2 bytes

Where written: I Where read:

SrvInputQueue I SrvInpuQueue
EvalSOCInput I

Description: GoDMAFlag is a boolean flag which is
used to determine whether a DMA
transfer is to occur. A DMA transfer
will not occur when a system status
request is made from the SOC terminal.

c
- C

!°°

"-C -'C

%C.1.7 InChar -

Item Name: InChar

Data Type: array

Item Size: 1800 bytes

Where written: Where read:

SOCInterruptServiceRoutine 1 SrvInputQueue
TlInterruptServiceRoutine EvalSOCInput
T21nterruptServiceRoutine MoveMsgtoNodeTTxDMA
T31nterruptServiceRoutine
T41nterruptServiceRoutine
T51nterruptServiceRoutine
T61nterruptServiceRoutine
T71nterruptServiceRoutine
SetUpForInputDMAI

Description: InChar is an 1800 element array of
characters. InChar is partitioned by
each of the 9 entries in PST yielding
an input buffer size of 200 chars
for each port.

S.,

S.

'p

N

4.9

-'a"o-

C- 9

.4"="• ", " ""'¢ ¢ "" """"" "" '' " """ """ ' ""€ " ""'" "

"- " " " " "" " " - " " ""1 -*" I " "" a a *j'" ", "." '. : . " " / . '

*" ,,+ ,+,+ + a.. .. s . s ,,&,= .a p , , +. + M + 3 S o. . .. ' .. -. -t, ; +, - , '+ + +++; ' " + . . + .-. ;- o

C.1.8 LastMsaSeaNbr -

Item Name: LastMsgSeqNbr

Data Type: Integer

Item Size: 2 bytes

Where written: : Where read:

BldTransportHeader I BldTransportHeader

Description: LastMsgSeqNbr is a variable which
equals the last message sequence number
assigned to an outbound DMA transfer.
When this number, incremented for
each new message, equals a pre-

.4 defined upper limit, it is reset
to zero.

C01

'i
,j

4-

4-

4.

*4

..

4 C..1
4

.4"

. 4 4. . . *. 4 *o4 *4%,~- -5

C.1 .9 NB-

Item Name: NBT

Data Type: structure

Item Size: 24 bytes

Where written: IWhere read:

InitSystem IInitSyaytem
PerfNorinalActivities IPerfNormalActivities
MoveMsgtoNodeTTxDMA ISrvlnpuQueue
SrvNodeQueue IMoveMsgtoNodeTTxDMA
TTxtoDMAOutput I dTransportHeader
DMAtoTTxTransfer ISrvNodeQueue

ITTxtoDMAOutput
IDMAtoTTxTransfer

Description: The Node Buffer Table (NBT) is
a global communication structure
through which several subroutines
can manage the NodeChar buffer
transactions.

-C-1

"IL

C.1.10 NBTCharCount -

Item Name: NBTCharCount

Data Type: Integer

Item Size: 2 bytes

Where written: I Where read:

BldTransportHeader I SrvInputQueue
" BldTransportHeader
I SrvNodeQueue

Description: NBTCharCount is the message character
count used for messages residing
in character array NodeChar.
NBTCharCount is always an even
number because the DMA transfer
protocol requires word (2 bytes)
transfers and messages residing in
NodeChar are either headed for the
DMA or have just been received
via DMA.

C-12

'' ' ,, °.'" L °. ' L. . '' °,% _ . _ . J-
•

" ". - " '
. - • . 'K. -

C.1 .11 NodeChar-

Item Name: NodeChar

Data Type: array

Item Size: 4000 bytes

Where written: I Where read:

I oveMsgtoNodeTTxDMA I SrvNodeQueue
' TTxtoDMAOutput
I DMAtoTTxTransfer

Description: NodeChar is a 4000 element character
array which contains complete
messages headed for (or received
from) the DMA interface. It is
partitioned by the 2 entries in
NBT into 2000 character buffers,
one for each of the 2 node queues.
Pointers into NodeChar are
maintained in the structure NBT.

C-13

q q .

. ,' 'w ' .,. . ,'.. - .• , .. , , . -. ,- " -, -- , .,. '., .. , - .- , - . , . , . .,, • _. . , , • , . ,, ,,

'al

. C.1I .12 OutChar-

Item Name: OutChar

Data Type: array

Item Size: 1800 bytes

Where written: Where read:

DMAtoTTxTransfer SrvOutputQueue

Description: OutChar is an 1800 element character
array partitioned by the 9 entries
of the PST into 200 character
buffers for each of the 9 ports.
OutChar contains characters to be
displayed upon the terminal screen
of the respective port console.
OutChar pointers are maintained in
structure PST.

C1

-oa

C-l
9,
9'

9, ** .% * * * %,b'a % % % . '~. -~
e ~**.- . .* -

C-1 .13 ME~X

Item Name: PST

Data Type: structure

Item Size: 604~ bytes

Where written: IWhere read:

InitSystem IInitSystem
InitPST IInitPST
Initlnterrupt3 Initlnterrupts
PerfNormalActivities IPerfNormalActivities
EvalSOCInput ISrvlnpuQueue
MoveMsgtoNodeTTxDMA IEvalSOCInput
SrvOutputQueue IMoveMsgtoNodeTTxDMA
DMAtoTTxTransfer IBldTransport~eader
SOClnterruptServiceRoutine ISrvOutputQueue
Ti InterruptServiceRoutine 1 SrvNodeQueue
T21nterruptServiceRoutine 1 DMAtoTTxTransfer
T31nterruptServiceRoutine 1 TermSystem
T41 lnterruptServ iceRoutine ISOClnterruptServ iceRoutine
T51nterruptServiceRoutine TllnterruptServiceRoutine
T61nterruptServiceRoutine T21nterruptServiceRoutine
T71nterruptServiceloutine 1T31nterruptServ iceRouti ne
SetUpForlnputDMA IT41nterruptServiceRoutine

* T51nterruptServiceRoutine
IT61nterruptServiceRoutine

I T71nterruptServiceRoutine
I SetUpForlnputDMA

Description: The Port Status Table (PST) is
9 entry global communication structure
through which several subroutines
can manage the InChar and OutChar
buffer transactions. Also, PST
contains the port addresses of each
port as well as the addresses of
the interrupt vectors and interrupt
service routines.

C-15

C.1.14 PSTCharCount-

Item Name: PSTCharCount

Data Type: Integer

* -Item Size: 2 bytes

Where written: IWhere read:

* SrvlnputQueue ISrvlnputQueue
IMoveMsgtoNodeTTxDMA

Description: PSTCharCount is a character count
representing the size (in bytes) of an

-. input request. This size includes
the number of characters typed on the
keyboard as well as the size of the
Transport Header which is appended
to the front of the message prior
to message movement into the TTxDMA

* node queue. PSTCharCount (unlike
NBTCharCount) may be an odd number.

c-1

.44L

C.1.15 Startdx -

Item Name: StartIdx

Data Type: Integer

:- Item Size: 2 bytes

Where written: Where read:

SrvInputQueue SrvInputQueue
EvalSOCInput

Description: StartIdx is a temporary variable
used primarily to calculate,
along with StopIdx, the
size (character count) of the
current input request from
a terminal operator. It is set
equal to the current position
of the PST InChar 'get' index
and remains unchanged (while
the 'get' index increments)

,. throughout processing of the
current request.

C1
jp.-

m

*1'."

J# ," .J

o... , .., ..-.- -- ,. • *- ,-.-. ,-.- ' .

C. 1.16 Sto -

S 'Item Name: StopIdx

Data Type: Integer

Item Size: 2 bytes

Where written: Where read:

SrvInputQueue SrvInputQueue

EvalSOCInput

Description: StopIdx is a temporary variable
* used primarily to calculate,

along with StartIdx, the
size (character count) of the
current input request from
a terminal operator. It is
initially set equal to StartIdx
and increments as each character
in InChar is scanned. When a
carriage return is encountered
in InChar, StartIdx is subtracted
from StopIdx to yield the number
of characters in the input string.

C-18
.. ,

%S.

'4
-4 . . • , • • . ..

O. C-1 .17 M~
'6,

Item Name: THT

Data Type: structure

Item Size: 36 bytes

Where written: IWhere read:

BldTransportHeader IMoveMsgtoNodeTTxDMA
1 SrvNodeQueue

Description: The Transport Header Table (THT)
* is a 36 character structure used

as a template to form the message
Transport Header (para.)
which is appended to the beginning
of each DMA-bound input request.

C-1

C.2 Functional Modules -

This section contains a brief PDL description of the

processing logic in each LFEPLO.C functional module.

Para Module Nbr Module Name Page

C.2 Functional Modules (Heading) C-20

C.2.1 0 Main C-21
C.2.2 1 InitSystem C-22
C.2.3 1.1 InitPST C-23
C.2.4 1.2 InitInterrupts C-24
C.2.5 1.2.1 SOCInterruptServiceRoutine C-25
C.2.6 1.2.2 TlInterruptServiceRoutine C-27
C.2.7 1.2.3 T21nterruptServiceRoutine C-28
C.2.8 1.2.4 T31nterruptServiceRoutine C-29
C.2.9 1.2.5 T4InterruptServiceRoutine C-30
C.2.10 1.2.6 T51nterruptServiceRoutine C-31

2 C.2.11 1.2.7 T61nterruptServiceRoutine C-32
i C.2.12 1.2.8 T7InterruptServiceRoutine C-33

C.2-13 1.2.9 DMAInterruptServiceRoutine C-34
C.2.14 1.2.9.1 SetUpForInputDMA C-36
C.2.15 2 PerfNormalActivities C-37
C.2.16 2.1 SrvInputQueue C-38
C.2.17 2.1.1 EvalSOCInput C-40
C.2.18 2.1.2 MoveMsgtoNodeTTxDMA C-41
C.2.19 2.1.2.1 BldTransportHeader C-42
C.2.20 2.2 SrvOutputQueue C-43
C.2.21 2.3 SrvNodeQueue C-44
C.2.22 2.3.1 TTxtoDMAOutput C-45
C.2.23 2.3.2 DMAtoTTxOutput C-46
C.2.24 3 TermSystem C-47

C-20

C.2.1 thi-n

Called From: ICI Shell

Modules Called: 1 InitSystem
2 PerfNormalActivities

* -3 TermSystem

Globals Read: N/A

Globals Written: N/A

PDL Description:

CALL InitSystem to initialize the system

CALL PerfNormalActivities to conduct normal activities

CALL TermSystem to effect an orderly return to RT11XM

C- 21

2. 2 a.7 -Z7

C.2.2 I -

Module Number: 1

Called From: 0 Main

Modules Called: 1.1 InitPST
1.2 InitInterrupts

Globals Read: NBROFBUFFERS
NBROFPORTS
NBT
NODEBUFFERSIZE
PST
TERMBUFFERSIZE

Globals Written: DMABusyFlag
FileOpenFlag
NET
PST

--
PDL Description:

set DMA Busy Flag = not busy status

if the accounting file can be opened
elset the File Open Flag = File is open
else

set the File Open Flag = File is not open
display an error message to the SOC

for all 9 entries in the Port Status Table
initialize the 4 InChar indexes
initialize the 4 OutChar indexes

for both entries in the Node Buffer Table
initialize the 4 NodeChar indexes

designate NBT entry 0 as "TTx"
designate NBT entry 1 as "DMA"
fetch the addrs of the Interrupt Service Routines

A CALL InitPST () --- to further initialize the PST

for all 9 I/O ports
CALL InitInterrupta () m-i to activate interrupts

.,. C-22
".

9.

** *- * ,. . ..--.~ W in n nln m u nanmmmnn - -

C.2.3 Ii±-.p-S

*Module Nme: 1.1

Called From: 1 InitSystem

Modules Called: N/A

Globals Read: BLANK8
DMAINTVECTOR
DMAPORTADDR
FIRSTPORT
FIRSTVECTOR

0, NBROFPORTS
1P NBROFTERMINALS

PC RTOFFS ET
PST
SOCINTVECTOR
SOC PORTADDR
VECTOROFFSET

Globals Written: PST

PDL Description:

for all PST entries:
init Terminal ID
init Port Addr
init Interrupt vector
init Terminal Mode
init Process ID
init Process Name

* C-23

C.2.4 InitInterruots -

Module Number: 1.2

Called From: 1 InitSystem

Modules Called: N/A

Globals Read: DMA
DMACSR
PST

Globals Written: PST

PDL Description:

set new interrupt PSW mask = 340 (octal)

save current port interrupt PSW mask
save current port interrupt vector

set current port interrupt mask = new interrupt PSW mask
set current port interrupt vector PST interrupt vector

1

I,,

C--2

1%

:I

.5

ITNW. -.AJp T - ..) -

vS

C.2.5 SOCInterruptServiceRoutine -

S ..*. Module Number: 1.2.1

Called From: hardware interrupt
(vector addr: 000060
port addr: 777560)

Activated from: 1.2 InitInterrupts

Modules Called: N/A

Globals Read: BACKSPACE
CR
CTRLC
DEL
LF
SPACE
InChar
PST
YES

Globals Written: AbortFlag
InChar
PST

-- ----------- --
O PDL Description:

CALL entint to save machine registers

move char from data port to InChar buffer
echo char to console screen

if input char was a carriage return
echo a line feed to the console screen

casentry -- input char

case Control C ("C)
set the system abort flag YES

case Delete key
if this is not the first char

* decrement the InChar "put" index
back-space the console cursor
over-write console char with a space
back-space the console cursor

case default
increment the InChar "put" index

C-25

. - -,- -.-"..v"- . '..:. v ,- *,z q*4 . e, °V, - g -- > . * ,.',, ."

4. .- .. ~~~IL - %I . ~ - * 4..

if InChar "put" index exceeds buffer limit

-~ ~ edcasedecrement InChar "put" index

CALL retint to restore machine registers

C-26

7Y ?-.!

C.2.6 TllnterruDtServiceRoutine -

Module Number: 1.2.2

Called From: hardware interrupt
(vector addr: 000300

port addr: 776500)

Activated from: 1.2 InitInterrupts

Modules Called: N/A

Globals Read: BACKSPACE
CR
DEL
LF
SPACE
InChar
PST

Globals Written: InChar
PST

PDL Description:

CALL entint to save machine registers

move char from data port to InChar buffer
echo char to console screen

, if char was a carriage return
echo a line feed to the console screen

if char was the "delete" key
if this is not the first char

decrement the InChar "put" index
- back-space the console cursor

over-write console char with a space
back-space the console cursor

else
increment the InChar "put" index

•. if InChar "put" index exceeds buffer limit
decrement InChar "put" index

CALL retint to restore machine registers

9.--

..

C-27

& . * .- ,," W . *_-., .

- . -- -,- - -- - . --

C.2.7 T21nterruptServiceRoutine -

Module Number: 1.2.3

. Called From: hardware interrupt
(vector addr: 000310

port addr: 776510)

Activated from: 1.2 InitInterrupts

* Modules Called: N/A

Globals Read: BACKSPACE
CR
DEL
LF
SPACE
InChar
PST

Globals Written: InChar
PST

PDL Description:

CALL entint to save machine registers

move char from data port to InChar buffer
* echo char to console screen

if char was a carriage return
echo a line feed to the console screen

if char was the "delete" key
if this is not the first char

decrement the InChar "put" index
back-space the console cursor
over-write console char with a space
back-space the console cursor

else
increment the InChar "put" index
if InChar "put" index exceeds buffer limit

decrement InChar "put" index

CALL retint to restore machine registers

C-28

V
oI 2 -, '3% ",; , ; .',"' . € g '-: ' -. ; - - . " " -'. v V . ' . ,:". ... -'
, 'a q " . ' = ,

-S. T- q 77 - 7 - -

C.2.8 T3InterruptServiceRoutine -

Module Number: 1.2.4

Called From: hardware interrupt
- vector addr: 000320
port addr: 776520)

Activated from: 1.2 InitInterrupts

Modules Called: N/A

Globals Read: BACKSPACE.CR

DEL
LF
SPACE
InChar
PST

a. Globals Written: InChar
PST

9.

PDL Description:

o CALL entint to save machine registers

move char from data port to InChar buffer
echo char to console screen
if char was a carriage return

echo a line feed to the console screen

if char was the "delete" key
if this is not the first char

decrement the InChar "put" index
back-space the console cursor
over-write console char with a space
back-space the console cursor

else
increment the InChar "put" index
if InChar "put" index exceeds buffer limit

decrement InChar "put" index

CALL retint to restore machine registers

C-29
4.

-, ,, ,a2 .,; -''.; :'.; ' '. .<..-, '..,.- '. .- -." - ' '-. '*'-. ?'- .2

C.2.9 T41nterruptServiceRoutine -

Module Number: 1.2.5

Called From: hardware interrupt
, vector addr: 000340
port addr: 776540)

' Activated from: 1.2 InitInterrupts

Modules Called: N/A

Globals Read: BACKSPACE
CR
DEL
LF
SPACE
InCharL ': PST

Globals Written: InChar
PST

PDL Description:

-i CALL entint to save machine registers

move char from data port to InChar buffer
echo char to console screen

if char was a carriage return
echo a line feed to the console screen

if char was the "delete" key
if this is not the first char

decrement the InChar "put" index
back-space the console cursor
over-write console char with a space
back-space the console cursor

else
increment the InChar "put" index
if InChar "put" index exceeds buffer limit

decrement InChar "put" index

CALL retint to restore machine registers

V3
C- 30

v....

r"C ,C° '* ~ C **~5.. *

'},w '%*-.-.,!: .'.',,.-',.'.," . v ...v ."v ,--." , ,, ,- .",,,v ., .',. -,.. v ,--, ,".-.. ,- ." " '.-' . , ,,,Z'. ', .,'';C

C.2.10 T5InterruptServiceRoutine

Module Number: 1.2.6

Called From: hardware interrupt
(vector addr: 000350
port addr: 776550)

Activated from: 1.2 InitInterrupts

Modules Called: N/A

Globals Read: BACKSPACE
CR
DEL
LF
SPACE
InChar
PST

Globals Written: InChar
PST

PDL Description:

CALL entint to save machine registers

move char from data port to InChar buffer
echo char to console screen

if char was a carriage return
echo a line feed to the console screen

if char was the "delete" key
if this is not the first char

decrement the InChar "put" index
back-space the console cursor
over-write console char with a space
back-space the console cursor

else
increment the InChar "put" index
if InChar "put" index exceeds buffer limit

decrement InChar "put" index

CALL retint to restore machine registers

C-31

I4 ' ' , . .- * " ..- . / .' ' . . ' ." v - - " - " -" -" -" " -" -" "• " " "

C.2.11 T61nterruptServiceRoutine -

Module Number: 1.2.7

Called From: hardware interrupt
" vector addr: 000360
port addr: 776560)

Activated from: 1.2 InitInterrupts

Modules Called: N/A

Globals Read: BACKSPACE
CR
DEL
LF
SPACE
InChar
PST

Globals Written: InChar
PST

PDL Description:

CALL entint to save machine registers

move char from data port to InChar buffer
echo char to console screen

if char was a carriage return
echo a line feed to the console screen

*if char was the "delete" key
if this is not the first char

decrement the InChar "put" index
back-space the console cursor
over-write console char with a space
back-space the console cursor

else
increment the InChar "put" index
if InChar "put" index exceeds buffer limit

decrement InChar "put" index

CALL retint to restore machine registers

C-32

C.2.12 T71nterruptServiceRoutine -

Module Number: 1.2.8

Called From: hardware interrupt
(vector addr: 000370
port addr: 776570)

Activated from: 1.2 InitInterrupts

Modules Called: N/A

Globals Read: BACKSPACE
CR
DEL
LF
SPACE
InChar
PST

Globals Written: InChar
PST

S ---
PDL Description:

CALL entint to save machine registers

move char from data port to InChar buffer
echo char to console screen

if char was a carriage return
echo a line feed to the console screen

if char was the "delete" key
if this is not the first char

decrement the InChar "put" index
back-space the console cursor
over-write console char with a space
back-space the console cursor

." else
increment the InChar "put" index
if InChar "put" index exceeds buffer limit

decrement InChar "put" index

CALL retint to restore machine registers

C-33

no. * ... *

C.2.13 DMAInterruptgerviceRoutine -

Module Number: 1.2.9

Called From: hardware interrupt
(vector addr: 000124
port addr: 772410)

Activated from: 1.2 InitInterrupts

Modules Called: 1.2.9.1 SetUpForInputDMA

Globals Read: DMABAR
DMACSR
DMADBR
DMAGO
DMAIREQUEST
DMANEX
DMAODIR ECTION

4 DMAOMODE
DMAWCR

DMABusyFlag
DMAwc
NBT
NodeChar

Globals Written: DMABusyFlag
DMAwc
NBT
NodeChar

--

PDL Description:

CALL entint to save machine registers

if a non-existant memory address was referenced
display a SOC alert

else
if this is a host input request

CALL SetUpForInputDMA to service the request
else

casentry -- status of the DMA-busy flag
case 1 (input, word mode expected)

fetch the word count from the host
if enough room in node queue for msg

set DMA-busy flag = 2
set DMA Base Addr register
set DMA Word Count register
set DMACSR Output Direction

C-34

4.

' . ** ,* , .. - .

set DMACSR Output Mode
set DMACSR Go bit

else
display SOC alert

case 2 (input, block mode expected)

* case 3 (output, word mode in progress)

case 4 (output, block mode in progress)

endcase

CALL retint to restore machine registers

.C3

.W

.4

..

C-35

C.2.14 SetUpForInputDMA -

4 ,,Module Number: 1.2.9.1

Called From: 1.2.9 DMAInterruptServiceRoutine

Modules Called: N/A

Globals Read: DMA
DMABAR
DMACSR
DMAIMODE
DMAOMODE
DMAWCR

DMABusyFlag
DMAwc
InChar
PST

Globals Written: DMABusyFlag
PST

-------------- ---
PDL Description:

set DMA-busy flag = input (word mode) expected
set up DMA Base address register

if DMA request is for "word" mode
set DMA output mode to "word" mode
set DMA word count 1

else
set DMA output mode to "block" mode
set DMA word count = requested word count
set DMA-busy flag input (block mode) expected

;3

°.1

C-36

| g" o " " ' -", ,° " '}'mb ' ' " ' ,, ' , %,, " ,'% w """ * , , . °""""% , . ,

C.2.1 5 PerfNormalActivities-

~. :-Module Number: 2

Called From: 0 Main

Modules Called: 2.1 SrvlnputQueue
2.2 SrvOutputQueue
2.3 SrvNodeQueue

Globals Read: AbortFjlag
NB ROFBUFFE RS
NBROFPORTS
NBT
NO
PST

Globals Written: NBT
PST

PDL Description:

display "FEP Activated" console alert
display activation time

while the abort flag remains cleared

for all Input Queues
if input chars are queued

CALL SrvlnputQueue
else

re-initialize pointers

for all Output Queues
if output chars are queued

CALL SrvOutputQueue
else

re-initialize pointers

for all Node Queues
if node chars are queued

CALL SrvNodeQueue
else

re-initialize pointers

C-37

C.2.16 SrvlnoutOueue -

S'Module Number: 2.1

Called From: 2 PerfNormalActivities

Modules Called: 2.1.1 EvalSOCInput
2.1.2 MoveMsgtoNodeTTxDMA

Globals Read: CR
DMA
DMATTx
GoDMAFlag
InChar
NBT
NBTCharCount
PST

vPSTCharCount
SOC
StartIdx
StopIdx
THTSIZE
TTxDMA

Globals Written: GoDMAFlag
NBT
NBTCharCount
PST
PSTCharCount
StartIdx
StopIdx

PDL Description:

while Input Queue chars remain to be evaluated

if the char is a carriage return or
the terminal is in character mode

if input was from SOC
CALL EvalSOCInput
set node index for outbound DMA

else
if input was from DMA

set node index for inbound DMA
else

set node index for outbound DMA

if chars are to be moved to DMA
calculate the message size (chars)

C-38

if the message size is an odd number
add one for DMA even word transfer

if enough space exists in node queue
CALL MoveMsgtoNodeTTxDMA

else
display SOC alert of node saturation

C-3 9

C.2.17 EvaISOCInDut -

~.Module Number: 2.1.1

Called From: 2.1 SrvlnputQueue

Modules Called: N/A

Globals Read: GoDMAFlag
InChar
NET
NO

-~ PST
SOC

A Startldx
Stopldx
YES

Globals Written: GoDMAFlag
PST

--

PDL Description:

Assume no DMA output is to occur

if input request is to display the PST
CALL DispPST

else
if input request is to display the NBT

CALL DispNBT
* else

if input request is to display time
CALL DispTime

else
set DMA-output-is-to-occur flag

if this current input is a display request
adjust fetch pointer for next input message!

C44

C.2.18 MoveMsgtoNodgTTxDMA-

Module Number: 2.1.2

Called From: 2.1 SrvlnputQueue

Modules Called: 2.1.2.1 BldTransportHeader

Globals Read: InChar
LF
NBT
NodeChar

* PSTCharCount
PST
THT
THTSIZE

Globals Written: NBT
NodeChar
PST

--- ---

PDL Description:

CALL BldTransportfleader for current message

for each character to be moved to the node queue

if the char is part of the Transport Header
move char from TH-T to NodeChar

else
move char from InChar to NodeChar

if message contains an odd number of chars
pad message with a trailing line feed char

N CALL GatherStats to trap node queue accounting data

4C.4

C.2.19 BldTransportHeader -

Module Number: 2.1.2.1

Called From: 2.1.2 MoveMsgtoNodeTTxDMA

Modules Called: N/A

Globals Read: MAXMSGSEQNBR
ZBTERM
Z ER05

2° LastMsgSeqNbr
NBT
NBTCharCount
PST

Globals Written: LastMsgSeqNbr
THT

PDL Description:

copy process name from PST to THT
copy process ID from PST to THT
copy terminal ID from PST to THT
copy terminal mode from PST to THT

increment the last message sequence number

if last message sequence number exceeds limit
set last message sequence number = 0

copy ascii value of last message sequence number to THT
set the multi-packet flag in THT = character 'N'
copy ascii value of msg char count to THT
set multi-packet sequence number in THT = '00'
copy originating node name from NBT to THT
copy a zero byte delimiter to THT

f.: C-42

1' a

C.2.20 SrvOutputQueue -

Module Number: 2.2

Called From: 2 PerfNormalActivities

Modules Called: N/A

Globals Read: OutChar
PST

Globals Written: PST

--
PDL Description:

if output port is ready for next character

move next char from OutChar to output data port
increment the OutChar "get" pointer

if the OutChar "get" pointer exceeds high limit
set OutChar "get" pointer to low limit

.-.- 4

~C-4

V.i

.J :.. :'': , ' z ' ' .Z' '','", '¢ '' . .'. <- , - -. '',. . ,. ---. -" -.". -'

C.2.21 SrvNodeQueue -

Module Number: 2.3

Called From: 2 PerfNormalActivities

Modules Called: 2.3.1 TTxToDMAOutput
2.3.2 DMAtoTTxOutput

Globals Read: NBROFPORTS
TTxDMA

NBT

NBTCharCount
NodeChar
PST

Globals Written: EndIdx
NBT
NBTCharCount

PDL Description:

While chars remain in the queue
Do for each entry (port) in the PST

CALL strcompare to match terminal ID with msg header
if the msg in the queue is for this terminal user

get msg char count from Transport header
convert this ascii count to an integer
set EndIdx = NodeChar index of the last char
if the queue being serviced is TTx-to-DMA

CALL TTxtoDMAOutput to request DMA transfer
else

CALL DMAtoTTxOutput to move msg to OutChar

if strcompare could find no matching terminal ID
display an error alert upon the SOC terminal screen
display the msg contents on the SOC terminal screen
flush entire node buffer by resetting the 'get' ptr

.C

.' .* '* ~ *"... * .*...**- *.* *. * .

iD-Ai38 152 DEVELOPMENT OF A COMMUNICATIONS FRONT END PROCESSOR 3/3
(FEP) FOR THE VAX-lit --(U) AIR FORCE INST OF TECH
jRIGHT-PATTERSON AiFB OH SCHOOL OF ENGI.. A F MASTY

UNCLASSIFIED DEC 83 AFIT/GCS/EE/83D-13 F/G 17/2 N

EhmhohhohmoiE
EhhmhmhhhhhhhE
EhhhhhhhhhhhhE

i.5,

/ lE 1.1 12

'.1.

.. II

NATtONAL BUREAU OF STANDAROS-1963-A

II

*% .ss

.4

'5,..

isp ii

*- -.'2"".5:'''"","-" -:."". -"' .. ""**--:' .- ~ -: - .]] " -'--' -"'--- --,:,,]"" 'd
5'..--,

C.2.22 TTxtoDMAOutput -

Module Number: 2.3.1

Called From: 2.3 SrvNodeQueue

Modules Called: N/A

J. Globals Read: DMACSR
DMAREADY
DMAODIRECTION
DMAOMODE
TTxDMA

DMABusyFlag
EndIdx
NBT
NodeChar

Globals Written: DMACSR
DMADBR
DMAODIR ECT ION
DMAOMODE

DMABusyFlag
-. NBT

PDL Description:

if 'word' mode input is expected and DMA is not busy
• set DMA Base Addr register = block word count
" set DMA Output mode = 'word' mode

set DMA Output direction = LSI is transmitter
set DMA-busy flag = Output 'word' mode in progress

else
display an error alert msg upon the SOC terminal screen

*..
" CALL GatherStats to trap node queue accounting data

C-'45

-a , . -- , . . ,, ,4 .- k.-.. ,. . . - .,, ,.... . ,,, - - - - --.q .. 2_ ...
o

. - .. . =,, -- • -; ._ =

* C.2.23 DMAtoTTxOutput -

Module Number: 2.3.2

Called From: 2.3 SrvNodeQueue

Modules Called: N/A

Globals Read: DMATTx

EndIdx
NBT
NodeChar
PST

Globals Written: NBT
OutChar

PST

3-
PDL Description:

CALL GatherStats to trap node queue accounting data

while NodeChar characters remain for this message
if OutChar 'put' 4ndex < high limit

copy char from NodeChar to OutChar
increment NodeChar pointer to next char
increment OutChar pointer for next char

iC4

C-4

r4

.1 C.2.24 TermSystm -

" - Module Number: 3

Called From: 0 Main

Modules Called: N/A

Globals Read: NBROFPORTS

PST

Globals Written: N/A

PDL Description:

Do for all PST entries
restore original interrupt PWS mask
restore original interrupt vector address

display a SOC alert that the FEP system has been aborted

CALL DispTime to display the time of abort

CALL DispElapsedTime to display the duration of FEP processing

CALL fclose to close the accounting file

C-47

.."

i-.5.'.- -. *. . .-.... .-: . - .. ?. %. . .% '- >.I S . . * '.j'k A'.I V. ?S.I

'-4-.-. - 4- - • . . . 4.. 4 '*- ' " "-'-.- . --. • - -' '°
"
*

- -
4

-
*

-
" -

-. "

*4 w

I

APPENDIX D

LSI FEP SOURCE CODE LISTINGS

These source listings represent the latest versions

of the LSI FEP programs LFEPLO.C and LFEPHI.C. Modules
forming LFEPLO.C are identified by module numbers containing

purely numerical terms. Modules forming LFEPHI.C are

identified by prefixing the numerical part with the 'X'

character representing extended memory mapping.

.4

.

fl D- 14

Table of Contents for Appendix-D

Para Module Nbr Module Name Page

D.1 "LFEPLO.C" Program Modules (header) D- 3

D.1.1 0 Main D- 8
D.1.2 1 InitSystem D- 9
D.1.3 1.1 InitPST D-11
D.1.4 1.2 InitInterrupts D-13
D.1.5 2 PerfNormalActivities D-14
D.1.6 2.1 SrvInputQueue D-16
D.1.7 2.1.1 EvalSOCInput D-18
D.1.8 2.1.2 MoveMsgtoNodeTTxDMA D-20
D.1.9 2.1.2.1 BldTransportHeader D-22
D.1.10 2.2 SrvOutputQueue D-23
D.1.11 2.3 SrvNodeQueue D-24
D.1.12 2.3.1 TTxtoDMAOutput D-26
D.113 2.3.2 DMAtoTTxOutput D-27
D.1.14 3 TermSystem D-29
D.1.15 1.2.1 SOCInterruptServiceRoutine D-30
D.1.16 1.2.2 TlInterruptServiceRoutine D-32
D.I.17 1.2.3 T21nterruptServiceRoutine D-34
D.1.18 1.2.4 T31nterruptServiceRoutine D-36

0 D.1.19 1.2.5 T41nterruptServiceRoutine D-38
D.1.20 1.2.6 T51nterruptServiceRoutine D-40
D.1.21 1.2.7 T61nterruptServiceRoutine D-42

D.1.22 1.2.8 T71nterruptServiceRoutine D-44
D.1.23 1.2.9 DMAInterruptServiceRoutine D-46
D.1.24 1.2.9.1 SetUpForInputDMA D-48

D.2 "LFEPHI.C" Program Modules (header) D-49

D.2.1 X.1 DispPST D-52
D.2.2 X.2 DispNBT D-55
D.2.3 X.3 GetCurrentTime D-57
D.2.4 X.4 DispTime D-59
D.2.5 X.5 CalcElapsedTime D-60
D.2.6 X.6 DispElapsedTime D-62
D.2.7 X.7 GatherStats D-63

D-2

D.1 LFEPLO.C Program modules

* TITLE: LSI FEP Low Memory 1C' Program *
, * *

* FILENAME: LFEPLO.C *

DATE: 3 Nov 83 *
S* VERSION: Al *
• OWNER: Capt Allan F. Masty
• COMPUTER SYSTEM: LSI-11/23 *
• OPERATING SYSTEM: RT11XM *
* LANGUAGE: Telecon 'C' *

* CONTENTS: 0 Main *

• 1 InitSystem *
• 1.1 InitPST *
* 1.2 InitInterrupts *

'N * 1.2.1 SOCInterruptServiceRoutine *

"* 1.2.2 TlInterruptServiceRoutine *
• 1.2.3 T21nterruptServiceRoutine *
•1.2.4 T3nterruptServiceRoutine

1.2.5 T41nterruptServiceRoutine *
S"- *1.2.6 T51nterruptServiceRoutine *

1.2.7 T61nterruptServiceRoutine *
1.2.8 T71nterruptServiceRoutine *

• 1 .2.9 DMAInterruptServiceRoutine *
• 1.2.9.1 SetUpForInputDMA

2 PerfNormalActivities *
2.1 SrvInputQueue *
2.1.1 EvalSOCInput *
2.1.2 MoveMsgtoNodeTTxDMA *

* 2.1.2.1 BldTransportHeader *
2.2 SrvOutputQueue *

<* 2.3 SrvNodeQueue *
* 2.3.1 TTxtoDMAOutput *
* 2.3.2 DMAtoTTxOutput *

• 3 TermSystem *

• FUNCTION: Performs as a Communications Front End *
Processor (FEP) for a DEC VAX-11/780. *

• Functions as a Terminal Concentrator in *
• assembling and routing the keyboard and *
G-"* screen traffic for 8 (expandable to 16) *
• DEC VT-100 terminals. *

D-3

. ; J...: .. :;i....7;. '..i.; ... x... - . ':,-,.- , .i , .".:.. . .,-

.

"A / 0a GLOBALS /

#define BACKSPACE \010' /* Back-space char code
#define CR '\015' / Carriage Return char#define CTRLC '\003' /* C (control-C)char t

#define DEL '\177' /* "DELETE" key char code */
#define FIRSTPORT 0176500 /* First LSI-11 port addr */
#define FIRSTVECTOR 0000300 /* First int. vector addr '/
#define LF '\012' /* Line Feed character '/
#define MAXMSGSEQNBR 0007777 /* Largest message number */""#define NO 0 /* BOOLEAN variable m
#define PORTOFFSET 8 /* 8 word port seperations */
#define SOCPORTADDR 017T560 / 1/0 port addr for SOC '/
#define SOCINTVECTOR 0000060 /* SOC Interrupt vector addr*/
#define SPACE '\040' /* Space character code
#define TERMBUFFERSIZE 200 /* Terminal buffer size
#define VECTOROFFSET 8 /* Interrupt vector spacing *l
#define YES 1 /* BOOLEAN variable

extern char InChar H] , / Terminal Input Buffers */
OutChar [H , /I Terminal Output Buffers */
NodeChar [; / Node-to-Node Buffers '1

#include "lfepio.h" /. Standard 10 routines '/

O extern int fopen) ;

int AbortFlag = NO , /* BOOLEAN for aborting FEP */
DMABusyFlag , / Flag set when the DMA

interface is busy :

0 = Not Busy
1 = DMA word input expected
2 = DMA block input expected
3 = DMA word output pending
4 = DMA block output pending '1

DMAwc / DMA word count (block)
* EndIdx , /* Used in servicing NodeChar */

FileOpenFlag , /* Status of file LSIFEP.DAT '1
GoDMAFlag , / BOOLEAN to send DMA output */
Startldx /* Used in servicing InChar
Stopldx , / Used in servicing InChar */
LastMsgSeqNbr /* Increments for each new msg
NBTCharCount , /* Count of chars in NBT msg '1
PSTCharCount ; / Count of chars in PST msg */

FILE *fp
Ofopen ()

D-4

* . Port Status CPS)Table defines & declarations..

#define NBROFPORTS 9 1* NBROFTERMINALS +SOC .DMA *
#define NBROFTERMINALS 7 1* # of VT-100 terminals '
#define SOC 0 /* System Operator's Console*/
#define Ti 1 /* VT-100 unit #1 '
#define T2 2 1* VT-100 unit #2 *
#define T3 3 1* VT-1O0 unit #3
#define T4 4 I' VT-100 unit #4
#define T5 5 I' VT-100 unit #5 *
#define T6 6 /* VT-1O0 unit #6 #

V#define T7 7 /* VT-100 unit #7 1
#define DMA 8 1* Direct Memory Access

-:struct PortStatusDataRecord

char TID (4J ; * VT-1O0 Terminal ID
char TermMode ; * line or character mode *

int InLowldx , /* Input buffer pointers '
mnt InPutldx
int InGetldx
int InHighldx

mnt OutLowldx ; I Output buffer pointers *
i2 t OutPutldx
int OutGetldx
mnt OutHighldx

int *RcvStatAddr ; 1 receive port status addr *
mnt 'RcvDataAddr ; * receive port data addr *
mnt *TxmStatAddr ; I transmit port status addr*/
mnt *TxmDataAddr ; /* transmit port data addr *

int *IntVectAddr ; I receive port int. addr '
mnt IntfloutineAddr ; I Interrupt service routine*/

nt, StorlntVect
int StorPSW

PST (NBROFPORTS)* 1 /O Port Status Table CPST)

D-5

4r

.S ~ ~ ~ ~ ~ T ;M -.- IN'. * * *

1'* index DEFINES for node - to -node buffers . . . *

#define TTxDMA 0 I' TTx to DMA buffer 1
#define DMATTx 1 I' DMA to TTx buffer '

0 . misc defines for Node Buffer table 0 . 0 0 .

#define NBROFBUFFERS 2 /* Number of Node buffers *
#define NODEBUFFERSIZE 2000 1' # of chars in each buffer*/

1* * . Node Buffer Table declaration *****.**

struct NodeBufferRecord

char OrgNode [4i)
int Lowldx
mnt Putldx
mnt Getldx
int Highldx

4 NBT (NBROFBUFFERS J /* Node Buffer Table CNBT)1

*struct MsgTransportLayerHeader

char TID [3]
char Mode ;I char MsgSeqNbr (4I)
char MsgCharCnt [4I]
char OrgNode 13]

THT ; I Transport Header Table CTHT)*

#define THTSIZE sizeof CTHT)

D-6

, "1*, / *.... Defines for DMA control

#define DMAINTVECTOR 0000124 /* DMA interrupt vector
#define DMAPORTADDR 0172410 /* DMA start port address */
#define DMAWCR 0172410 /* DMA Word Count Register '/
#define DMABAR 0172412 / DMA Bus Address Register /
#define DMACSR 0172414 /* DMA Control/Status Reg */
#define DMADBR 0172416 / DMA Data Buffer Register '/

. / ... the following define bit settings in DMACSR */

#define DMAGO 0000001 /* bit 0 *1
#define DMAOMODE 0000002 / bit 1 /
#define DMAODIRECTION 0000004 /* bit 2 */
#define DMAOREQUEST 0000010 /* bit 3 s/

/ bit 4 not used '/
/* bit 5 not used */

* #define DMAIE 0000100 / bit 6 '/
#define DMAREADY 0000200 / bit 7 '1
#define DMACYCLE 0000400 /* bit 8 *I
#define DMAIMODE 0001000 / bit 9 /
#define DMAIDIRECTION 0002000 / bit 10 /
#define DMAIREQUEST 0004000 /* bit 11 /

/* bit 12 not used *1
/* bit 13 not used */

#define DMANEX 0040000 /* bit 14 */
#define DMAERROR 0100000 /* bit 15 'I

.

., D -7
A °

4 ;?:i . . ." ' "" " " "" "" " "" -"" " " " ""'

D.1 .1 Main
+<... I***********************aaaa***aaaaa*aa***** ********* * a*a*

• MODULE NUMBER / NAME: 0 - Main *

* DATE: 3 Nov 83 *
* VERSION: Al a
* FUNCTION: Top level module for "LFEPLO.C" a

INPUTS: NONE
* OUTPUTS: NONE *
* GLOBAL VARIABLES USED: NONE *
* GLOBAL VARIABLES CHANGED: NONE *
a GLOBAL TABLES USED: NONE a

- GLOBAL TABLES CHANGED: NONE a
a FILES READ: NONE a
- FILES WRITTEN: NONE a
a MODULES CALLED: 1 - InitSystem
a 2 - PerfNormalAcivities a
a 3 - TermSystem a
a CALLING MODULES: NONE a

a AUTHOR: Capt Allan F. Masty, GCS-83D a
a* HISTORY: VSN Al - 3 November 1983 a

.0 Main ()

_, InitSystem () ; /* First-time processing a/

PerfNormalActivities () ; /* Synchronous processing a/

TermSystem () ; /* Clean-up routines a,

exit (0); /* return to RT-11 monitor a,

D-

4.

D-8

D.1.2 InitSysten

* MODULE NUMBER /NAME: 1 -InitSystem

* DATE: 3 Nov 83
* VERSION: Al
* FUNCTION: Initializes data base and opens

* accounting file "LSIFEP.DAT".
* INPUTS: NONE
* OUTPUTS: NONE
* GLOBAL VARIABLES USED: NONE
* GLOBAL VARIABLES CHANGED: DMABusyFlag

* FileOpenFlag
* GLOBAL TABLES USED: NBT

* PST
a GLOBAL TABLES CHANGED: NBT

PSTa
* FILES READ: NONE*
* FILES WRITTEN: NONE*
* MODULES CALLED: 1.1 - InitPST

1.2 - Initlnterrupts
a CALLING MODULES: 0 - Main*

a AUTHOR: Capt Allan F. Masty, GCS-83D
* HISTORY: VSN Al - 3 November 1983a

InitSystem C

int i; /* Loop control variable *

DMABusyFlag =0 ; , Input word [mode] expected a
FileOpenFlag =YES

if C fp = fopen C"LSIFEP .DAT", "w") =NULL)

FileOpenFlag =NO

printf ("\n LSIFEP.DAT cannot be opened. \n"

for Ci =0; 1 < NBROFPORTS; i++.

PST [ilnLowldx = i * TERMBUFFERSIZE
PST (iJ.InPutldx = PST [iJ.InLowldx
PST [iJ.InGetldx = PST [ilnLowldx
PST [il.InHighldx =PST [i].InLowldx.TERMBUFFERSIZE-1;
PST [ib.OutLowldx = i a TERMBUFFERSIZE
PST Ci).OutPutldx = PST [iJ.OutLowldx

D-9

PST [il.OutGetldx =PST [i].OutLowldx
PST [i].OutHighldx =PST [iI.OutLowldx.TERMBUFFERSIZE-1;

for Ci=0; i < NBROFBUFFERS; i++

NBT [iJ.Lowldx = i * NODEBIJFFERSIZE
NET [iJ.Putldx =NET [ib.Lowldx;
NET [iJ.Getldx = NET [iJ.Lowldx;
NET [iJ.Highldx =NET [iJ.Lowldx+NODEEUFFERSIZE-1;

strcpy CNET [TTxDMA).OrgNode, "TTxw)
4.strcpy (NET [DMATTx).OrgNode, "DMA")

PST [SOC).IntRoutineAddr =S0ClnterruptServiceRoutine
PST (T1].IntRoutineAddr =TllnterruptServiceRoutine
PST [T2].IntRoutineAddr =T21nterruptServiceRoutine
PST (T3].IntRoutineAddr =T31nterruptServiceRoutine
PST [T4].IntRoutineAddr =T41nterruptServiceRoutine
PST (T5J.IntRoutineAddr =T51nterruptServiceRoutine;
PST [T6].IntRoutineAddr =T61nterruptServiceRoutine
PST (T7].IntRoutineAddr = T71nterruptServiceRoutine

PST (DMA).IntRoutineAddr = DMAlnterruptServiceRoutine

InitPST C) I Initialize Port Status Table *

Initlnterrupts C);/* Turn on all interrupts '

return;

D-10

D.1 .3 InitPST

o : i-/*******§*******,*****§*§** §* **

MODULE NUMBER/ NAME: 1.1 - InitPST *

DATE: 3 Nov 83 *
0 VERSION: Al

• FUNCTION: Completes PST initialization *
• INPUTS: NONE *
* OUTPUTS: NONE
• GLOBAL VARIABLES USED: NONE *
• GLOBAL VARIABLES CHANGED: NONE *
* GLOBAL TABLES USED: PST
* GLOBAL TABLES CHANGED: PST *
• FILES READ: NONE *
• FILES WRITTEN: NONE *
• MODULES CALLED: NONE *
* CALLING MODULES: 1 - InitSystem *

* AUTHOR: Capt Allan F. Masty, GCS-83D *
• HISTORY: VSN Al - 3 November 1983 *

InitPST()

int i ; /* index into PST */

strcpy (PST (SOC].TID, "SOC") ;
strcpy (PST [T1].TID, "T.1") ;
strepy (PST [T2].TID, "T.2") ;
strepy (PST [T3J.TID, "T.3") ;
strcpy (PST [T4] .TID, "T.4")
strcpy (PST C T5J.TID, "T.5")
strcpy (PST [T6].TID, "T.6")
strcpy (PST [T71.TID, "T.7")
strcpy (PST [DMA].TID, "DMA"

for Ci = 1; i <= 3; 1 +) /0 VT-100's only */{
PST [i].RcvStatAddr = FIRSTPORT +

((i-I) 0 PORTOFFSET
PST [i].IntVectAddr = FIRSTVECTOR +

((i-I) * VECTOROFFSET)

for C 4 ; i <= NBROFTERMINALS; i++)

{

t.'.'D-11

-a # ' '-L . ' ' .-. " ' ," €-" ' , . -" "."-"-"-" """•"""-""" . """% - _- ,.

PST [i).RrnvStatAddr =FIRSTPORT
(* PORTOFFSET)

PST [i].IntVectAddr =FIRSTVECTOR +
Ci * VECTOROFFSET)

PST [SOCJ.RcvStatAddr = SOCPORTADDR
PST [SOC].IntVectAddr =SOCINTVECTOR
PST CDMA].RcvStatAddr =DMAPORTADDR
PST (DMAJ.IntVectAddr =DMAINTVECTOR

for Ci = 0 ; i < NBROFPORTS; i++.)
{ /* all table entries *

PST [i].TerinMode = f
PST [iJ.RcvDataAddr = PST [i].RcvStatAddr +. 2
PST (iJ.TxmStatAddr =PST Ei].RcvStatAddr +4
PST EiJ.TxinDataAddr =PST [il.RcvStatAddr + 6

return;

D-1

. --

D.1 .4 InitInterrupts

* *

* MODULE NUMBER / NAME: 1.2 - InitInterrupts

DATE: 3 Nov 83 *
* VERSION: Al
* FUNCTION: Enables interrupts for all PST *

entries *
* INPUTS: NONE *
* OUTPUTS: NONE
* GLOBAL VARIABLES USED: NONE
* GLOBAL VARIABLES CHANGED: NONE *
* GLOBAL TABLES USED: PST
* GLOBAL TABLES CHANGED: PST *
* FILES READ: NONE
* FILES WRITTEN: NONE *
* MODULES CALLED: NONE

CALLING MODULES: 1 - InitSystem*

* AUTHOR: Capt Allan F. Masty, GCS-83D *
,* * HISTORY: VSN Al - 3 November 1983 *

InitInterrupts

'. {

int i , 1* index into PST */
PSW /* Processor Status Word */
temp ; / temporary pointer */

PSW 0000340 /* Interrupt vector PSW */

for i = 0; i < NBROFPORTS; i++)
S

I {

temp PST (i].IntVectAddr

PST [i].StorIntVect = *(temp)
PST [i].StorPSW *(temp 1)
*PST (i].IntVectAddr = PST (i].IntRoutineAddr
*(temp 1) - PSW

if (i < DMA) /* enable interrupts*/
*PST [i].RcvStatAddr = 0100 ;

else
*DMACSR = 0100 ;

return ;
}

D-13

4
°

%..o'...'.'.''', '..-'''...'''. .-.. '.". .-. '...'.' ,-.' "''.' % ', " ', % " .,.. % '.' ". , "* ",.-". .S

D.1 .5 PerfNormalActivities

.b
* MODULE NUMBER / NAME: 2 - PerfNormalActivities

I I

* DATE: 3 Nov 83

* VERSION: Al
" FUNCTION: Loops and scans node queues

InChar, OutChar, and NodeChar *

, for message traffic to move. *

* INPUTS: NONE

* OUTPUTS: NONE

* GLOBAL VARIABLES USED: AbortFlag *

. , GLOBAL VARIABLES CHANGED: NONE *

* GLOBAL TABLES USED: NBT *

, PST
* GLOBAL TABLES CHANGED: NBT
, PST ,

, FILES READ: NONE *

* FILES WRITTEN: NONE *

* MODULES CALLED: X.4 - DispTime
2.1 - SrvInputQueue
2.2 - SrvOutputQueue
2.3 - SrvNodeQueue

* CALLING MODULES: 0 - Main *

* AUTHOR: Capt Allan F. Masty, GCS-83D *

* HISTORY: VSN Al - 3 November 1983 *
* *

PerfNormalActivities ()

.lb. {

"ti /* index into PST or NBT "1

printf ("\n++++++++ FEP Activated at ") ;

DispTime ()

while (AbortFlag = NO)

for (i = NBROFPORTS 1; i >= 0; i--)
.(I { /* Input queue scans */
if (PST [i].InPutIdx i= PST [i].InGetIdx)

SrvlnputQueue (i)
'- else

. PST[il.InPutIdx = PST[il.InLowIdx

D-14

,%:,

PST~i].InGetldx PST[il.InLowldx

for Ci NBROFPORTS - 1; i >= 0; i--)
{ /* Output queue scans ~

if (PST (i].OutPutldx I= PST Ei).OutGetldx)
SrvOutputQueue (i)

el1se

PST~iJ.OutPutldx =PST(iJ.OutLowldx
PST[iJ.OutGetldx = PST(iJ.OutLowldx

for Ci NBROFBUFFERS -1; 1 >= 0; 1--)
{ /* Node buffer scans /

if (NBT [iJ.Putldx I= NBT CiJ.Getldx)
SrvNodeQueue (i)

else

NBT (iJ.Putldx =NBT CiJ.Lowldx
* NBT [i].Getldx =NBT [i).Lowldx

return;

D-15

w-r-- * .. - - - - .-. - .o . --. . - . i f. .% . / j.,

D.1.6 SrvInputQueue

" .
• MODULE NUMBER / NAME: 2.1 - SrvInputQueue *

• DATE: 3 Nov 83
• VERSION: Al
* FUNCTION: Moves character data from queue *
• InChar to queue NodeChar. *
• INPUTS: i = index into PST *
• OUTPUTS: NONE *
• GLOBAL VARIABLES USED: GoDMAFlag *
• NBTCharCount *
' * PSTCharCount *
• StartIdx *
,#* StopIdx *

* GLOBAL VARIABLES CHANGED: GoDMAFlag
• NBTCharCount *

* PSTCharCount
• StartIdx *
• StopIdx *
• GLOBAL TABLES USED: Inchar *
• NBT *
• PST *
* GLOBAL TABLES CHANGED: NBT *
• PST

FILES READ: NONE *
* FILES WRITTEN: NONE *
* MODULES CALLED: 2.1.1 - EvalSOCInput
.-* 2.1.2 - MoveMsgtoNodeTTxDMA *

* CALLING MODULES: 2 - PerfNormalActivities *

• AUTHOR: Capt Allan F. Masty, GCS-83D *
"- * HISTORY: VSN Al - 3 November 1983 *

[.**JlllJliillilli*J*l********** **

SrvInputQueue (i)

int i ; /* index into the PST */

s StopIdx StartIdx PST [i].InGetIdx

. . while (StopIdx < PST [i].InPutldx)
°", {

if C C InChar [StopIdx++] == CR) I'
(PST [i].TermMode 'C'))

if (i SOC)

D-16

.,

,'V . , . ," ", ", . . . '.. . .. '. ' '.., ... ,. '..'.,, ,..,,,

"I.VI

EvalSOClnput (

if CGoDMAFlag++)/* chars to be moved to DMA *

PSTCharCount Stopldx - Startldx + THTSIZE
NBTCharCount PSTCharCount

if (NETCharCount & 0000001)
++NBTCharCount

if C(NBT [TTxDMAJ.Putldx + NBTCharCount)
<= NBT [TTxDMA].Highldx)

MoveMsgtoNodeTTxDMA C i)
else

printf ("\n Node %s saturated.\n",
NBT [TTxDMA].OrgNode)

I
I /* end of "if" processing *

I f* end of "while" loop *
return;

4D-1

4-

D.1 .7 EvalSOCInput

• MODULE NUMBER / NAME: 2.1.1 - EvalSOCInput •

• DATE: 3 Nov 83 •
* VERSION: Al
* FUNCTION: Displays system status data on *
I * System Operator's Console (SOC) *
• request.
• INPUTS: NONE
• OUTPUTS: NONE •
• GLOBAL VARIABLES USED: GoDMAFlag

* Startldx
• StopIdx *
• GLOBAL VARIABLES CHANGED: GoDMAFlag *
• GLOBAL TABLES USED: InChar *
• NBT *
• PST *
• GLOBAL TABLES CHANGED: PST
* FILES READ: NONE *
* FILES WRITTEN: NONE
• MODULES CALLED: X.1 - DispPST *

X.2 - DispNBT
X.4 - DispTime

• CALLING MODULES: 2.1 - SrvInputQueue *

• AUTHOR: Capt Allan F. Masty, GCS-83D *

• HISTORY: VSN Al - 3 November 1983 •

EvalSOCInput ()(
char *p

int z;

GoDMAFlag = NO ; /* assume local SOC processing */

. p &(InChar [StartIdx]) ;

if (strcompare ("pst", p, 3) ==3)
DispPST (&PST)

else
if (strcompare ("nbt", p, 3) 3)

DispNBT (&NBT)
else

if (strcompare ("time", p, 4) =4)

D-18

°.l°r , , , % V + . - -+ ' j % --. ' . ' . .- . V,' - + .- ,.- , - . . + - . . - , " - ." . " - . - . . , " . . - . - " • . .- .- * .i *

printf ("\nTime
DispTime C
printf ("\n")

else I, set up for DMA transfer ~
GoDMAFlag YES

if CGoDMAFlag NO)
PST [SOCJ.InGetldx =Stopldx

return;

D-1

D.1.8 MoveMsgtoNodeTTxDMA

MODULE NUMBER / NAME: 2.1.2 - MoveMsgtoNodeTTxDMA

* DATE: 3 Nov 83
VERSION: Al

* FUNCTION: Moves chars from queue InChar
*to queue NodeChar

INPUTS: i = index into PST
SOUTPUTS: NONE
I" GLOBAL VARIABLES USED: PSTCharCount U
i GLOBAL VARIABLES CHANGED: NONE
" GLOBAL TABLES USED: InChar
I NBT
* PST
*THT

GLOBAL TABLES CHANGED: NBT *
"* NodeChar
* " PST *
* FILES READ: NONE

' * FILES WRITTEN: NONE *
* MODULES CALLED: 2.1.2.1 - BldTransportHeader *

X.7 - GatherStats
* CALLING MODULES: 2.1 - SrvlnputQueue

* AUTHOR: Capt Allan F. Masty, GCS-83D
* HISTORY: VSN Al - 3 November 1983

MoveMsgtoNodeTTxDMA (i)

int i ; /' index into PST '/

char *CharPtr
int j

BldTransportHeader (i);

for C CharPtr = THT, j 0; j < PSTCharCount; j++)~{

if (j < THTSIZE)
NodeChar[NBTETTxDMA].Putldx++] = *(CharPtr+.);

else
NodeChar[NBT(TTxDMA].PutIdx++] = InChar[PST(i].InGetldx}

if C PSTCharCount & 0000001) /* if odd # of characters *1

D-20

.' i- '-.. - ;** .'.Z-. ,-,'"- -,.".:.-'---

J
J

NodeChar i: NBT [TTxDMA].Putldx+.] LF

GatherStats (&THT, 1)

return ;
I

.1~

e

* 'a

4.P

9..*: ~
N

.1
-C. J

-PC.

S.- J

-4
-V.

D-21

P. D.1.9 BldTransportHeader

* MODULE NUMBER / NAME: 2.1.2.1 - BldTransportHeader *

* DATE: 3 Nov 83 *
• VERSION: Al *
• FUNCTION: Writes into the 15 character *

• skeleton "THT" to create the *
• Message Transport Layer Header.
• INPUTS: i = index into PST
• OUTPUTS: NONE *
• GLOBAL VARIABLES USED: NBTCharCount *
• GLOBAL VARIABLES CHANGED: LastMsgSeqNbr *
• GLOBAL TABLES USED: PST *
• GLOBAL TABLES CHANGED: THT
* FILES READ: NONE *
* FILES WRITTEN: NONE *
• MODULES CALLED: NONE *
• CALLING MODULES: 2.1.2 - MoveMsgtoNodeTTxDMA *

• AUTHOR: Capt Allan F. Masty, GCS-83D
* HISTORY: VSN Al - 3 November 1983 *

BldTransportHeader (i)

int i ; /* PST index */

strcopy (THT.TID, PST [i].TID, 3)
THT.Mode PST [iJ.TermMode

if (++LastMsgSeqNbr > MAXMSGSEQNBR)
LastMsgSeqNbr = 0 ;

intascii (THT.MsgSeqNbr, LastMsgSeqNbr, 4)
intascii (THT.MsgCharCnt, NBTCharCount, 4)
strcopy (THT.OrgNode, "TTx", 3)

return;

D-22

*."'" "' ". " "S "-" '" " . " .
'. '

/ " " -. ~ " '.. -. . .. - - " ..

D.1 .10 SrvOutputQueue

" •
• MODULE NUMBER / NAME: 2.2 - SrvOutputQueue *

• DATE: 3 Nov 83 *
• VERSION: Al *
• FUNCTION: Moves next screen character to
• Transmit Data Buffer (XBUF) if *
I- Transmit Control & Status *

Register (XCSR) indicates that *
the buffer is ready for it. *

* INPUTS: i = index into PST *
* OUTPUTS: NONE

• GLOBAL VARIABLES USED: NONE *
• GLOBAL VARIABLES CHANGED: NONE
* GLOBAL TABLES USED: PST *
* GLOBAL TABLES CHANGED: OutChar *
.* PST *

* FILES READ: NONE *
• FILES WRITTEN: NONE *
* MODULES CALLED: NONE *
* CALLING MODULES: 2 - PerfNormalActivities

* AUTHOR: Capt Allan F. Masty, GCS-83D *
. * HISTORY: VSN Al - 3 November 1983 *

..................................

SrvOutputQueue (i)

int i ; /* index into the PST */

printf ("\n ???????? SrvOutputQueue (%d) ", i)

if * *PST [i].TxmStatAddr & 0200)
{
*PST [i].TxmDataAddr OutChar [PST[iJ.OutGetIdxl

if (++PST [i].OutGetIdx > PST [i].OutHighIdx)
PST [i].OutGetIdx PST [i].OutLowIdx

return ;

D-23
S-I,.

SI
SI

% ,:. ,/,..'. . ,.... ,-,..4 , , *5 .-... * . . .-.. *,. . .- ,.. .,. ,

-~. 1.

D.1l.11 SrvNodeQueue

* MODULE NUMBER /NAME: 2.3 - SrvNodeQueue

* DATE: 3 Nov 83
* VERSION: Ala
* FUNCTION: Controls movement of chars from

* NodeChar to the DMA interface
* or to OutChar.

* INPUTS: n =index into NBTa
* OUTPUTS: NONE
* GLOBAL VARIABLES USED: NETCharCount
* GLOBAL VARIABLES CHANGED: EndIDX

* NBTCharCounta
* GLOBAL TABLES USED: NBT

* NodeChara
* * PST

* THTa
a GLOBAL TABLES CHANGED: NBTa
a FILES READ: NONEa
a FILES WRITTEN: NONEa
a MODULES CALLED: 2.3.1 - TTxtoDMAOutputa

a 2.3.2 - DMAtoTTxOutputa
a CALLING MODULES: 2 - PerfNormal.Activitlesa

a AUTHOR: Capt. Allan F. fiasty, GCS-83D a
a HISTORY: VSN Al - 3 November 1983a

SrvNodeQueue (n)

int n; /* index into the NBTa!

mnt i

char *a

while CNET [n].Getldx I= NET [nJ.Putldx)

j NBROFPORTS

for Cp 0; p < NEROFPORTS; p++..

if Cstrcompare (PST~p].TID9
&NodeChar[NBT~n].GetIdxJ, 3) 3)

D-24

p =NBTn]Getdx+ &(THT.MsgCharCnt) - &(THT);

* c = (NodeChar [p1

NBT~~harL.LLAL (siin cl 4

Endldx =NBT [n J.Getldx + NBTCharCount

if (n1 TTxDMA)
TTxtoDMAOutput (

else
ADMAtoTTxOutput

Ci) *ed'f

1 1* end 'for' *

if Ci NBROFPORTS)

printf ("\n Invalid TID "
while (NBT [n].Getldx 1= NBT [n].Putldx)

printf ("%cn, NodeChar [NBT[n).Getldx++))
printf C"\n\n")

I 1'/ end 'while' '
return

D-25

D.1 .12 TTxtoDMAOutput

* MODULE NUMBER /NAME: 2.3.1 -TTxtoDMAOutput

* DATE: 3 Nov 83
* VERSION: Al
* FUNCTION: Controls movement of messages

* from NodeChar to DMA interface
* INPUTS: NONE
* OUTPUTS: NONE
* GLOBAL VARIABLES USED: DMABusyFlag

* EndIDX
* GLOBAL VARIABLES CHANGED: DMABusyFlag
* GLOBAL TABLES USED: NBT

* NodeChar
* GLOBAL TABLES CHANGED: NBT
* FILES READ: NONE*
* FILES WRITTEN: NONE
* MODULES CALLED: X.7 - GatherStats
* CALLING MODULES: 2.3 - SrvNodeQueue

* AUTHOR: Capt Allan F. Masty, GCS-83D
* HISTORY: VSN Al - 3 November 1983

TTxtoDMAOutput (

if (CDMABusyFlag 0) && C*DMACSR & DMAREADY))

*DMADBR -(CEndldx - NBT [TTxDMA).Getldx) / 2)
*DMACSR &= -(DMAOMODE);
*DMACSR j~DMAODIRECTION
DMABusyFlag 3 ;/* Output word in progress *

else

printf ("\nTTxtoDMAOutput =DMA busy -"

printf (f DMACSR =%oft, *DMACSR)
printf C" DMABusyFlag =%d". DMABusyFlag)

GatherStats C&NodeChar [NBT[TTxDMA).Getldx 1, 2)

while (NBT [TTxDMAJ.Getldx 1= Endldx)

printf ("%c", NodeChar [NBT [TTxDMA].Getldx++ I

return;

D-26

D.1.13 DMAtoTTxOutput

* MODULE NUMBER / NAME: 2.3.2 - DMAtoTTxOutput

* DATE: 3 Nov 83 *
* VERSION: Al
* FUNCTION: Controls movement of messages

* from NodeChar to OutChara
* INPUTS: i = index into PST *
* OUTPUTS: NONE *
* GLOBAL VARIABLES USED: EndIDX *
a GLOBAL VARIABLES CHANGED: NONE *
* GLOBAL TABLES USED: NBT a
* NodeChar *
* PST a
a THT *
a GLOBAL TABLES CHANGED: NBT a
a PST a
* FILES READ: NONE a
a FILES WRITTEN: NONE a
a MODULES CALLED: X.7 - GatherStats a
a CALLING MODULES: 2.3 - SrvNodeQueue a

a AUTHOR: Capt Allan F. Masty, GCS-83D a
a HISTORY: VSN Al - 3 November 1983 a

DMAtoTTxOutput (i)
int i ; /* index into PST a/{
int p

GatherStats (&NodeChar [NBT[DMATTx].GetIdx], 2)

p = NBT [DMATTx].GetIdx . &(THT.Mode) - &(THT) ;
PST [iJ.TermMode = NodeChar (p] /* update LSI database */

printf ("\nDMAtoTTxTransfer

* . while ((NBT [DMATTx].GetIdx I EndIdx) &&
(PST [i].OutPutIdx < PST [i].OutHighIdx))

{
printf ("%", NodeChar [NBT [DMATTx].GetIdxl)

. OutChar [PST[i].OutPutIdx +]
NodeChar [NBT[DMATTxJ.GetIdx++]

D-27

% - a *ao , o . .a * - * . . . *..- .

printf ("\n\n");

"-- return

!II

S.

.5'%

"

.' %

5,

°o5

"*,

" .' , - " " " " ". . " "' ' " " " " ""5'.' " " " ' " " " " " " " ' ". .

D.1 .14 TermSystem

* MODULE NUMBER / NAME: 3 - TermSystem *L"* *

* DATE: 3 Nov 83 *
* VERSION: Al *
* FUNCTION: Performs termination processing *
* INPUTS: NONE *
* OUTPUTS: NONE *
* GLOBAL VARIABLES USED: NONE *
* GLOBAL VARIABLES CHANGED: NONE *
* GLOBAL TABLES USED: PST *
* GLOBAL TABLES CHANGED: NONE
* FILES READ: NONE *
* FILES WRITTEN: NONE *
* MODULES CALLED: X.4 - DispTime *
* X.6 - DispElapsedTime
* CALLING MODULES: 0 - Main" .
* AUTHOR: Capt Allan F. Masty, GCS-83D *
* HISTORY: VSN Al - 3 November 1983 *

* /*idxinoPT*

TermSystem ()

int i ,* index into PST
temp ; / temporary pointer */

for (i = 0; i < NBROFPORTS; i++
{ /* restore old interrupt settings */
temp z PST C i].IntVectAddr
.C temp) PST C i].StorIntVect
*(temp+l) = PST [i].StorPSW
I

printf ("\n\n+....... FEP aborted at ") ;

*.-: DispTime ()

printf (" > elapsed time ") ;

DispElapsedTime ()

felose (fp)

return

D-29

* 5 ..
'

.4 % 'q, . 9,J ,- ,, .','.',',','.'.'. -'.~I -' , ' . - , , , . ' ' ' . . o

F. F. v. * * 4 ..

D.1.15 SOCInterruptServiceRoutine

* MODULE NUMBER / NAME: 1.2.1 - SOCInterruptServiceRoutine *

* DATE: 3 Nov 83 *
* VERSION: Al
* FUNCTION: Controls movement of characters

from Receiver Data Buffer (RBUF) *
* to queue InChar. *
* INPUTS: NONE *
* OUTPUTS: NONE

GLOBAL VARIABLES USED: NONE *
* GLOBAL VARIABLES CHANGED: AbortFlag
* GLOBAL TABLES USED: PST *

* GLOBAL TABLES CHANGED: InChar
" * PST *

* FILES READ: NONE *

* FILES WRITTEN: NONE *
* MODULES CALLED: NONE *
* CALLING MODULES: 1.2 Initlnterrupts (activation)

.* *

* AUTHOR: Capt Allan F. Masty, GCS-83D *
* HISTORY: VSN Al - 3 November 1983 *

SOCInterruptServiceRoutine)

{
entint) ; /* save registers */

InChar [PST[SOC].InPutIdx] = *PST[SOC].RcvDataAddr
*PST(SOC].TxmDataAddr = *PST[SOC].RcvDataAddr

if (InChar [PST [SOCJ.InPutIdx I == CR)
*PST [SOC].TxmDataAddr = LF

switch (InChar [PST (SOC].InPutIdx])

case CTRLC :{
AbortFlag YES
break ;
}

case DEL :
'oW {

if C PST [SOC].InPutIdx > PST (SOC].InGetIdx)

D-30

.. (

--PST ESOC].InPutldx
* PST [SOCI.TxmDataAddr BACKSPACE
while (PST[SOC].TxiStatAddr & 0200) 0);
*PST (SC).TxrnDataAddr =SPACE
while ((*PST[SOC].TxmStatAddr & 0200) 0);
*PST [SOCJ.TxmDataAddr =BACKSPACE;

break;

default:

* if (++PST (SOC).InPutldx PST [SOC).IriHighldx)
--PST ESOCJ.InPutldx

break

retint 0) /* restore registers *

return;

D-3 1

1:- 7

D.1 .16 TlInterruptServiceRoutine

* MODULE NUMBER / NAME: 1.2.2 - TlInterruptServiceRoutine *
* *

'DATE: 3 Nov 83 *
• VERSION: Al
a FUNCTION: Controls movement of characters

from Receiver Data Buffer (RBUF) a
a to queue InChar. a
" INPUTS: NONE a
a OUTPUTS: NONE a
a GLOBAL VARIABLES USED: NONE a
a GLOBAL VARIABLES CHANGED: NONE

GLOBAL TABLES USED: PST a
a GLOBAL TABLES CHANGED: InChar a
a * PST a
a FILES READ: NONE a

FILES WALE: NONE a
SMODULES CALLED: NONE a
a CALLING MODULES: 1.2 - InitInterrupts (activation) a

a AUTHOR: Capt Allan F. Masty, GCS-83D a
a HISTORY: VSN Al - 3 November 1983 a

TlInterruptServiceRoutine ()

entint () ; /* save registers a/

InChar [PST[Tl].InPutIdx] = *PST[T1].RcvDataAddr
" *PST[Tl.TxmDataAddr = *PST[Tl).RcvDataAddr

-."if (InChar [PST [T1].InPutIdx] CR)
*PST [Tl.TxmDataAddr = LF ;

if (InChar [PST [T1].InPutIdx) =: DEL)
I
if C PST [T1.InPutIdx > PST [T1J.InGetIdx)

p.. {
--PST [T1].InPutIdx
*PST [T1.TxmDataAddr = BACKSPACE

while ((*PST[T1J.TxmStatAddr & 0200) == 0);
*PST [Tl].TxmDataAddr = SPACE ;
while ((*PST[T1].TxmStatAddr & 0200) =: 0);
*PST [Tl.TxmDataAddr = BACKSPACE

p.D-}

D -32

,.

-q.. ...", - -

else
if (++PST [Tl.InPutIdx PST [T1].InHighIdx

, ..-- PST [TI].InPutIdx

retint () ; /* restore registers */

return

D-33

,..-

-

_ *.

~.r~r~rcrw P.r F; r -i Pq F7 - r r ~ .77u-- 7.y 7. 7- P.. --

D.1.17 T21nterruptServiceRoutine

• MODULE NUMBER / NAME: 1.2.3 - T21nterruptServiceRoutine •

• DATE: 3 Nov 83
VERSION: Al •

• FUNCTION: Controls movement of characters •
from Receiver Data Buffer (RBUF) •

• to queue InChar. •
• INPUTS: NONE •
• OUTPUTS: NONE •
• GLOBAL VARIABLES USED: NONE *
• GLOBAL VARIABLES CHANGED: NONE •
' GLOBAL TABLES USED: PST •
• GLOBAL TABLES CHANGED: InChar •
• PST
• FILES READ: NONE •
• FILES WRITTEN: NONE *
• MODULES CALLED: NONE •

• CALLING MODULES: 1.2 - InitInterrupts (activation) •

AUTHOR: Capt Allan F. Masty, GCS-83D •
• HISTORY: VSN Al - 3 November 1983 •

T21nterruptServiceRoutine ()

{
entint) ; /* save registers */

InChar [PST[T2].InPutIdx] = *PST[T2].RcvDataAddr
*PST[T2].TxmDataAddr = *PST[T2].RcvDataAddr

if (InChar [PST [T21.InPutIdx I == CR)
* PST [T2].TxmDataAddr = LF ;

if (InChar [PST [T2].InPutIdx J == DEL)
-" {

if (PST [T2].InPutIdx > PST [T2].InGetIdx)
D~o {

--PST [T2].InPutIdx
*PST [T2].TxmDataAddr = BACKSPACE ;
while ((•PST[T2].TxmStatAddr & 0200) == 0);
•*PST [T2].TxmDataAddr = SPACE ;
while ((*PSTCT2].TxmStatAddr & 0200) == 0);
*PST [T2].TxmDataAddr = BACKSPACE

D

* D-34

• '. . -, .. .o . .." .°, . . - .. .". -.. -. , . - . . ".*.'. - . .*4 . 4 .- . * ' . .,,

else
* .if (++PST [T2].InPutldx PST [T2].InHighldx)
-- --PST (T2].InPutIdx

retint () ; /* restore registers */

return

D

,

It

a.

4.

.4.

D-35

.4

7777

D.1.18 T31nterruptServiceRoutine

* MODULE NUMBER / NAME: 1.2.4 - T31nterruptServiceRoutine *
I ,

* DATE: 3 Nov 83 *
* VERSION: Al *

* FUNCTION: Controls movement of characters
from Receiver Data Buffer (RBUF) *

• to queue InChar.
• INPUTS: NONE *
• OUTPUTS: NONE
* GLOBAL VARIABLES USED: NONE
* GLOBAL VARIABLES CHANGED: NONE *
* GLOBAL TABLES USED: PST
* GLOBAL TABLES CHANGED: InChar
.* PST *

* FILES READ: NONE *
* FILES WRITTEN: NONE
• MODULES CALLED: NONE *
• CALLING MODULES: 1.2 - InitInterrupts (activation) *

* AUTHOR: Capt Allan F. Masty, GCS-83D *
• HISTORY: VSN Al - 3 November 1983 *

,.* *

4- *******ili****************i*iJ**/

T31nterruptServiceRoutine ()

entint) ; /* save registers */

InChar [PST[T3].InPutIdx] = *PST[T3].RcvDataAddr
•PST[T3].TxmDataAddr = *PST[T3].RcvDataAddr

if (InChar [PST [T3] InPutIdx] CR)
*PST [T3].TxmDataAddr = LF ;

if (InChar [PST [T31.InPutIdx] DEL)
,. {

if C PST [T3].InPutIdx > PST [T3].InGetIdx)

--PST [T3].InPutIdx
*PST [T3].TxmDataAddr = BACKSPACE
while ((*PST[T3].TxmStatAddr & 0200) 0);
*PST [T3].TxmDataAddr = SPACE ;
while ((*PST[T3].TxmStatAddr & 0200) 0);
*PST [T3].TxmDataAddr BACKSPACE ;

D-36

-.else
if ++PST [T3h.InPutIdx > PST [T31 InHighIdx)

--PST [T3].InPutIdx

retint () ; /* restore registers */

return

pD-37

"-4- . '. -' . ' .\. ' , -" , . ' ' x . ' ' -'j '.

D.1 .19 T4InterruptServiceRoutine

* MOUE/ AE

MODULE NUMBER NAME: 1.2.5 - T41nterruptServiceRoutine *

* DATE: 3 Nov 83 *
* VERSION:Al *
* FUNCTION: Controls movement of characters *
* from Receiver Data Buffer (RBUF) *
* to queue InChar.
* INPUTS: NONE *
* OUTPUTS: NONE *
' GLOBAL VARIABLES USED: NONE *
* GLOBAL VARIABLES CHANGED: NONE *
* GLOBAL TABLES USED: PST *
* GLOBAL TABLES CHANGED: InChar
*. PST *
* FILES READ: NONE *
* FILES WRITTEN: NONE *
* MODULES CALLED: NONE *
* CALLING MODULES: 1.2 - InitInterrupts (activation) *

,.* *

* AUTHOR: Capt Allan F. Masty, GCS-83D *
* HISTORY: VSN Al - 3 November 1983 *

%" ********************************

T4 1nterruptServiceRoutine)
, {

entint () ; /* save registers */

InChar [PST[T4].InPutIdxJ = *PST[T4].RcvDataAddr
*PST[T4].TxmDataAddr = *PST[T4].RcvDataAddr

if (InChar [PST [T4].InPutIdx I CR)
. *PST [T4].TxmDataAddr = LF

if (InChar [PST [T4].InPutIdx] DEL)
ho" {

if (PST [T4].InPutIdx > PST [T4].InGetIdx)

--PST [T4].InPutIdx ;
*PST [T4].TxmDataAddr = BACKSPACE
while ((*PST[T4].TxmStatAddr & 0200) 0);
*PST [T4].TxmDataAddr = SPACE ;
while ((*PST[T4].TxmStatAddr & 0200) 0);
*PST [T4].TxmDataAddr BACKSPACE

D-38

else
if + +PST [T4].InPutIdx > PST [T4].InHighIdx)

--PST [T4].InPutIdx

retint () ; / restore registers

. return ;

-3
.9.9
.9

D-3

.- '
,- -%- -' -* S S-*

D.1.20 T51nterruptServiceRoutine

'4 .-..

* MODULE NUMBER I NAME: 1.2.6 - T51nterruptServiceRoutine *

* DATE: 3 Nov 83
, VERSION: Al
* FUNCTION: Controls movement of characters
* from Receiver Data Buffer (RBUF)
* to queue InChar. *

INPUTS: NONE *
* OUTPUTS: NONE *
* GLOBAL VARIABLES USED: NONE *
* GLOBAL VARIABLES CHANGED: NONE *
* GLOBAL TABLES USED: PST
* GLOBAL TABLES CHANGED: InChar
*. PST *
, FILES READ: NONE *
* FILES WRITTEN: NONE
* MODULES CALLED: NONE *

CALLING MODULES: 1.2 - InitInterrupts (activation)
* *

* AUTHOR: Capt Allan F. Masty, GCS-83D
* HISTORY: VSN Al - 3 November 1983 *

* *~t~t~l~tlJ§~lt§§tt§lt~t§§~ll§l§

T5lnterruptServiceRoutine)

* {
entint) ; /* save registers *1

InChar [PST[T5].InPutIdxl = *PST[T5].RcvDataAddr
*PST[T5].TxmDataAddr = *PST[T5].RcvDataAddr

if (InChar [PST [T5].InPutIdx] CR)
*PST [T5].TxmDataAddr = LF ;

if (InChar [PST [T5].InPutIdx] == DEL){
if (PST [T5].InPutIdx > PST [T5].InGetIdx){

--PST [T5].InPutIdx
*PST [T5].TxmDataAddr = BACKSPACE
while ((*PST[T5].TxmStatAddr & 0200) 0);
*PST [T5].TxmDataAddr = SPACE ;
while ((*PST[T5].TxmStatAddr & 0200) 0);
*PST [T5].TxmDataAddr BACKSPACE

D-40

~ - *.. ~

else
if (++PST [T5].InPutIdx > PST [T5].InHighldx)

--PST [T5].InPutIdx ;

retint () /* restore registers */

return

D

,.

0

2

-I

4 -4

D.1.21 T61nterruptServiceRoutine

* MODULE NUMBER / NAME: 1.2.7 - T61nterruptServiceRoutine. * *

DATE: 3 Nov 83 *
* VERSION: Al
* FUNCTION: Controls movement of characters
* from Receiver Data Buffer (RBUF) *
* to queue InChar.
* INPUTS: NONE *
* OUTPUTS: NONE *
* GLOBAL VARIABLES USED: NONE *
* GLOBAL VARIABLES CHANGED: NONE *
* GLOBAL TABLES USED: PST *
* GLOBAL TABLES CHANGED: InChar
, * PST *

* FILES READ: NONE
* FILES WRITTEN: NONE *
* MODULES CALLED: NONE *
* CALLING MODULES: 1.2 - InitInterrupts (activation) *

* AUTHOR: Capt Allan F. Masty, GCS-83D *
. * HISTORY: VSN Al - 3 November 1983 *

T61nterruptServiceRoutine ()
Sd. {

entint) ; /* save registers */

InChar [PST[T6].InPutIdxl = *PST[T6].RcvDataAddr
*PST[T6].TxmDataAddr = *PST[T6].RcvDataAddr

if C InChar [PST [T6].InPutIdx I CR)
*PST [T6].TxmDataAddr = LF ;

if (InChar [PST [T6].InPutIdx] DEL):::i {
if (PST [T6].InPutIdx > PST [T6].InGetIdx)

"" {

--PST [T6].InPutIdx
*PST [T6].TxmDataAddr = BACKSPACE
while ((*PST[T6].TxmStatAddr & 0200) 0);
*PST [T6].TxmDataAddr = SPACE
while ((*PST[T6].TxmStatAddr & 0200) == 0);
*PST [T6].TxmDataAddr = BACKSPACE

* D-42

-%'

p

else
if (++PST [T6],InPutIdx > PST [T6],InHighIdx)

--PST [T6].InPutldx

retint () ; /* restore registers */

return ;

D

0,

* -4

4

.*% .. * .. -N1 j% %*<** , *.*.~.'p*.* ~ - ~ .

D.1 .22 T71nterruptServiceRoutine

*MODULE NUMBER /NAME: 1.2.8 -T71nterruptServiceRoutine

*DATE: 3 Nov 83
*VERSION: Al
*FUNCTION: Controls movement of characters

from Receiver Data Buffer (RBUF)
* to queue InChar.

*INPUTS: NO NE
-* OUTPUTS: NONE

GLOBAL VARIABLES USED: NONE
*GLOBAL VARIABLES CHANGED: NONE
*GLOBAL TABLES USED: PST
GLOBAL TABLES CHANGED: InChar

* PST
*FILES READ: NONE
*FILES WRITTEN: NONE
*MODULES CALLED: NONE
*CALLING MODULES: 1.2 -Initlnterrupts (activation)

*AUTHOR: Capt Allan F. Masty, GCS-83D
*HISTORY: VSN Al - 3 November 1983

T71nterruptServiceRoutine (

entint (; *save registers *
InChar [PST[T7J .InPutldxj *PSTCT7) .RcvDataAddr
*PST[T7J .TxmDataAddr =*PST[T7J .RcvDataAddr

if (InChar [PST [T7].InPutldx] CR)
*PST (T7J.TxmDataAddr =LF

if (InChar [PST [T7].InPutldx) DEL)

if (PST [T7].InPutldx > PST [T7].InGetldx)

-PST [T7).InPutldx
*PST (T7].TxmDataAddr = BACKSPACE;
while ((*PSTCT7].TxmStatAddr & 0200) ==0);
*PST [T7].TxmDataAddr = SPACE
while (('PST[T7].TxmStatAddr & 0200) ==0);
*PST (T7J.TxmDataAddr BACKSPACE;

D-4~4

else
if (++PST [T71.InPutIdx > PST [T7].InHighIdx)

-. ,--PST [T7].InPutIdx

retint () ; /* restore registers */

return ;

d

.9

4"

D.1.23 DMAInterruptServiceRoutine

-**

MODULE NUMBER / NAME: 1.2.9 - DMAInterruptServiceRoutin *

* DATE: 3 Nov 83 *
* VERSION: Al *
* FUNCTION: Controls movement of characters

* from the DMA interface to NodeChar
* INPUTS: NONE *
* OUTPUTS: NONE
* GLOBAL VARIABLES USED: DMABusyFlag *
* D MAwc *

* GLOBAL VARIABLES CHANGED: DMABusyFlag *
* DMAwc *
* GLOBAL TABLES USED: NBT
' * NodeChar *

* PST *
* GLOBAL TABLES CHANGED: NBT
" * PST *

* FILES READ: NONE *
* FILES WRITTEN: NONE *
* MODULES CALLED: 1.2.9.1 - SetUpForInputDMA *
* CALLING MODULES: 1.2 - InitInterrupts (activation) *

* AUTHOR: Capt Allan F. Masty, GCS-83DiHISTORY: VSN Al - 3 November 1983 *

DMAInterruptServiceRoutine ()

entint () ; 1* save registers */

printf ("\n ... DMACSR %o \n", *DMACSR)

if (*DMACSR & DMANEX) /* if NEX memory accessed */
printf ("\n NEX at %o", *DMABAR)

else
%, {

if (*DMACSR & DMAIREQUEST) /* host input request */
elseSetUpForInputDMA ()~else

printf ("\n Output Transfer Complete\n\n")
switch DMABusyFlag". {

case 1 : /* Input word expected */

D-46

T. i..1 .- . - - -, -I- .%,'.7

printf ("1\n DMABusyFlag =%d\n",DMABusyFlag);
DMAwc =*DMADBR;
if CCNBT[DMATTx].Putldx+(DMAwc*2))

<= NBT[DMATTxI .Highldx)

...DMABusyFlag ; I' block input expected '
*DMABAR =&(NodeCharCNBT[DMATTx] .PutldxD);
*DMAWCR =-DMAwc;
*DMACSR 1= DMAODIRECTION
*DMACSR &= -DMAOMODE
*DMACSR I:DMAGO

else
-ftprintf ("\n +=+=. DMAwc =%d , Putldx =%d V

.1DMAwc, NBT[DMATTxJ.Putldx)
break

case 2 : * Input block expected *

printf ("\n DMABusyFlag =%d\n",DMABusyFlag);
break

case 3 : I Output word in progress *

printt ("\n DMABusyFlag = %d\n",DMABusyFlag);
break;

case 4: 1' Output block in progress!

* printf ("n DMABusyFlag = %d\ri",DMABusyFlag);
break;

default:

printf ("\n DMABusyFlag = %d\n",DMABusyFlag);
break;

-' I I' end of 'switch' processing '

retint ();/* restore registers '

4.. return;

D-417

D.1 .24 SetUpForInputDMA

• MODULE NUMBER / NAME: 1.2.9.1 - SetUpForInputDMA *

* DATE: 3 Nov 83
* VERSION: Al
* FUNCTION: Programs the DMA interface ton receive a transfer from Host. *
* INPUTS: NONE ,
* OUTPUTS: NONE
* GLOBAL VARIABLES USED: NONE *
* GLOBAL VARIABLES CHANGED: DMABusyFlag *
* GLOBAL TABLES USED: InChar *
* PST *
• GLOBAL TABLES CHANGED: PST
* FILES READ: NONE *
* FILES WRITTEN: NONE *
• MODULES CALLED: NONE *
* CALLING MODULES: 1.2.9 - DMAInterruptServiceRoutine*i* *

• AUTHOR: Capt Allan F. Masty, GCS-83D *
• HISTORY: VSN Al - 3 November 1983 *

0 SetUpForInputDMA ()

{
printf ("\n . . DMA Input Interrupt Request")

DMABusyFlag = 1 ; /* Input word expected */
*DMABAR = &(InChar [PST (DMA].InPutIdx++]

if (*DMACSR & DMAIMODE) /* if request for 'word' mode */
{
DMACSR I= DMAOMODE ; / set output 'word' mode */

DMAWCR -1; / set Word Count register *1I I
else /* request is for 'block' transfer /

DMACSR &= (DMAOMODE); / set output 'block' mode */
DMAWCR -(DMAwc) ; / set Word Count register *1

DMABusyFlag++ ; /* Input block expected *1

printf ("\n ... DMACSR %o \n", *DMACSR)

return

D-48

C. -. ,, *-... . ..-.-. . ." . . '. , .. -..... - ,.. ~.* " . '..-. . .. > ... ,.. . >' -" - . i ---- ,

D.2 LFEPHI.C Program modules

* TITLE: LSI FEP Extended Memory 'C' Program *

* FILENAME: LFEPHI.C *

. * DATE: 3 Nov 83 *
* - * VERSION: Al

* OWNER: Capt Allan F. Masty *
* COMPUTER SYSTEM: LSI-11/23 *
* OPERATING SYSTEM: RT11XM *

* LANGUAGE: Telecon 'C' *

* CONTENTS: X.1 - DispPST *

* X.2 - DispNBT *
* X.3 - GetCurrentTime *

X.4I - DispTime
* X.5 - CalcElapsedTime
* X.6 - DispElapsedTime
* X.7 - GatherStats *

a FUNCTION: Provides an extended memory resident *
a' collection of service subroutines for a
a:" use by the low memory LFEPLO.C program a

/* GLOBALS *,

#include "lfepio.h" /* Standard 10 routines a,

extern int fopen ()

/* . . gtime () subr call data structure support . . *

struct timerec

int wl ; /* high order byte = minutes,
low order byte = hours */

int w2 ; /* high order byte = tics,
low order byte = seconds a,

time
...

char tim (11;

int
. mt StartHr -1

D-49

i.............................'

" " " " '" ' "."...' " " "" " "" '" " " ""- *'' " """ '"" ' " ° "-' . ""'-.-'.-,-"
'r '

" -,. ,,,,.., ,f.,W ,' '" ' ' - - " a",

qi.

StartMin -1
StartSec =-

i* h-StartTic = -1

hours,
minutes ,
seconds

ticks;

extern int *fp

/* . . Port Status (PS) Table defines & declarations */

#define NBROFPORTS 9 /* NBROFTERMINALS +SOC +DMA */

struct PortStatusRecord
I
char TID (4] ; /* VT-100 Terminal ID
char TermMode ; /* line or character mode */

mt InLowIdx ; /* Input buffer pointers *1
int InPutIdx
int InGetIdx
int InHighIdx

int OutLowIdx ; /* Output buffer pointers */
int OutPutIdx
int OutGetIdx
int OutHighIdx

nt *RcvStatAddr ; / receive port status addr
int *RcvDataAddr ; /* receive port data addr *1
int *TxmStatAddr ; / transmit port status addr*/
int *TxmDataAddr ; /* transmit port data addr*/

int *IntVectAddr ; receive port int. addr
int IntRoutineAddr ; /* Interrupt service routine*/

int StorIntVect
int StorPSW

#define PSRSIZE sizeof (PortStatusRecord)

/ * . .. misc defines for Node Buffer table */

#define NBROFBUFFERS 2 /* Nmbr of Node buffers */

D-50

P , '...,,b ,. 4 .' C % ,-. ...-... .-..... -...,.... .-...-.......... * ..-. - -. - fl..,.-. ..-.

.1 Node Buffer Table declaration *

struct NodeBufferRecord

char OrgNode [4I)
in t Lowldx
int Putldx
int Getldx
int Highldx

#define NBRSIZE sizeof (NodeBufferRecord)

1* * . . .Message Transport Layer Header ... I

struct MsgTransportLayerHeader

char TID [3)
char Mode;

-. char MsgSeqNbr [1;
char MsgCharCnt ['4)
char OrgNode [3)

#define THTSIZE sizeof (MsgTransportLayerHeader)

D-5 1

-L, L 4L, &. P - *22

D.2.1 DispPST

* MODULE NUMBER / NAME: X.1 - DispPST *

* DATE: 3 Nov 83
* VERSION: Al *
* FUNCTION: Displays (upon the SOC terminal *
* screen) certain PST values. *
* INPUTS: P = pointer to PST *
* OUTPUTS: NONE
* GLOBAL VARIABLES USED: NONE *
* GLOBAL VARIABLES CHANGED: NONE *
* GLOBAL TABLES USED: PST
* GLOBAL TABLES CHANGED: NONE *

FILES READ: NONE
* FILES WRITTEN: NONE *

9"4 * MODULES CALLED: NONE *
* CALLING MODULES: 2.1.1 - EvalSOCInput *

* AUTHOR: Capt Allan F. Masty, GCS-83D *
* HISTORY: VSN Al - 3 November 1983 *

-"4 , *
• '[************ **** *************** * ** ********** *****

DispPST (P)

struct PortStatusDataRecord *P

int i /* loop control variable */

printf ("\n i TID M I.LOW I.PUT I.GET I.HIGH")

printf (" O.LOW O.PUT O.GET O.HIGH\n\n")

for (i 0; i < NBROFPORTS ; i++){
printf (" %d", i)
printf (" %s", P-> TID
printf (" %c"v P-> TermMode)

if (P-> InLowIdx < 1000)
printf (" ")

if (P-> InLowldx < 100)
printf (" ")

if (P-> InLowIdx < 10)
printf (" ")

printf (" %d", P-> InLowIdx)

•D-52 D-52

4- - , : :..' ,: - .. _, : -.----- v ..- ..-.-.-. :. , --..-. , " k .-. "

'4, if (P-> IriPutldx < 1000)
printf(I)

if (P-> IriPutldx < 100)
printf (C" 11);

if CP-> InPutldx < 10)
printfC)

priritf C" d" P-> InPutldx)

if CP-> InGetldx < 1000)
printf C" ");

if CP-> IriGetldx < 100)
priritf C(1"

if (P-> IrxGetldx < 10)
printf(")

printf (" %du, P-> IriGetldx)

if CP-> In~ighldx < 1000)
printf (" "1);

if CP1-> InHighldx < 100)
printf (" "1);

if CP-> InHighldx < 10)
printf (1 "1);

printf (f %d", P-> InHighldx)

if (P-> OutLowldx < 1000)
printf (f if);

if CP-> OutLowldx < 100)
printf (" ");

if (P-> OutLowldx < 10)
printf (if ") ;

printf (" %d", P-> OutLowldx)

if CP-> OutPutldx < 1000)
printf (if i);

if CP-> OutPutldx < 100)

prnt (")

if P-> OutPutldx < 10)
printf (if i);

printf (if %d", P-> OutPutldx)
if CP-> OutGetldx < 1000

printf(ii)
V .1if CP-> OutGetldx < 100)

1%10 printf (" if);

if CP-> OutGetldx < 10)
priritf(ii)

printf C"%d", P-> OutGetldx)

*if CP-> OutHighldx < 1000)
* priritf ("f i);

if CP-> OutHighldx < 100)

D-53

printf(i)

if (P-> OutHighldx < 10)
printf()

printf (" %d", P-> OutHighldx)

printf ("\n"')

P += PSRSIZE

return

D-5

D.2.2 DispNBT

** MODULE NUMBER /NAME: X.2 -DispNBT

* DATE: 3 Nov 83
* VERSION: Al
* FUNCTION: Displays (upon the SOC terminal

* screen) certain NBT values,
INPUTS: P = pointer to NBT

* OUTPUTS: NONE
* GLOBAL VARIABLES USED: NONE
* GLOBAL VARIABLES CHANGED: NONE
* GLOBAL TABLES USED: NET
* GLOBAL TABLES CHANGED: NONE
* FILES READ: NONE
* FILES WRITTEN: NONE

MODULES CALLED: NONE
* CALLING MODULES: 2.1.1 - EvalSOCInput

* AUTHOR: Capt Allan F. Masty, GCS-83D
* HISTORY: VSN Al - 3 November 1983

~~, DispNBT (P)

struct NodeBufferRecord *P

int n; I' loop control variable *

printf ("Nn i low put get high \n\n");

for Cn =0; n < (NBROFBUFFERS);n++)

printf (I? %d", n)

if (P-> Lowldx < 10000)

printf (" ");
if CP-> Lowldx < 1000)

printf(")
if (P-> Lowldx < 100)

printfC")

printf C" %d", P-> Lowldx)

if CP-> Putldx < 10000)
printf(i)

*if (P-> Putldx < 1000)

D-55

• .> printf (', ")
if C P-> PutIdx < 100)

printf (" ")
if d P-> PutIdx < 10)

if C P-> Getldx < 10000)
printf (" ") ;

if (P-> Getldx < 1000)
printf (, ,) ;

if (P-> GetIdx < 100)
printf (" 1") ;

if C P-> GetIdx < 10)printf (" ");

printf (" %d", P-> GetIdx)

if C P-> Highldx < 10000)
;. ~printf (") ;

if (P-> HighIdx < 1000)
printf (") ;

if C P-> Highldx < 100)
prfntf (" ") ;

if P-> HighIdx < 10)

printf (" %d\n", P-> HighIdx)

P += NBRSIZE
I

return

'

-S

.5.. , - , " ' , . -' ' . '-" . ' ; ,
. : .

" -" - " -" .. " - " - " , " . - " - -- " - . . ' .-. .- . . . - . . .

.5.

D.2.3 GetCurrentTime

* MODULE NUMBER / NAME: X.3 - GetCurrentTime *

* DATE: 3 Nov 83 *
* VERSION: Al *
* FUNCTION: Evokes Macro-l1 coded function
* "gtime" (located in library *

LFMLLO.MAC) to read system time *
* INPUTS: NONE
a OUTPUTS: NONE *
" GLOBAL VARIABLES USED: hours, minutes, seconds, ticks *
, GLOBAL VARIABLES CHANGED: hours, minutes, seconds, ticks, a
a StartHr, StartMin, StartSec, a
a StartTic. a
a GLOBAL TABLES USED: time a
a GLOBAL TABLES CHANGED: time, tim a

FILES READ: NONE a
a FILES WRITTEN: NONE a
a MODULES CALLED: NONE a
a CALLING MODULES: X.4 - DispTime a

a AUTHOR: Capt Allan F. Masty, GCS-83D a
a HISTORY: VSN Al - 3 November 1983 a

GetCurrentTime ()

int k;

gtime (time) ;

hours = time.wl & 0377 ;
minutes C time.wl >> 8) & 0377
seconds = time.w2 & 0377 ;
ticks = time.w2 >> 8) & 0377 ;

if (StartHr < 0){
StartHr = hours ;
StartMin = minutes ;
StartSec = seconds ;
StartTic = ticks ;

tim [O (hours / 10) + '0'
tim (1] = (hours % 10) + '0' ;

9, D-57

t.
'

tim [2 ':'
tim [3) = (minutes / 10) +0;

- . tim [4] = (minutes % 10) + 0
tim [51 = :1 ;
tim [61 = (seconds / 10) + '0' ;
tim [7) = (seconds % 10) + '0'
tim [8] = ':'
tim C 9] = (ticks / 10) + O';
tim [10] = (ticks % 10) + 0

return;

..

°.

iD-5

- - - 5 °~. U' - ~- .

D.2.4 DispTime

" •
* MODULE NUMBER / NAME: X.4 - DispTime

* DATE: 3 Nov 83 *
• VERSION: Al *
* FUNCTION: Displays (upon the SOC terminal *

screen) current system time.
• INPUTS: NONE
• OUTPUTS: NONE *
• GLOBAL VARIABLES USED: NONE *

* * GLOBAL VARIABLES CHANGED: NONE *
• GLOBAL TABLES USED: tim
• GLOBAL TABLES CHANGED: NONE *
• FILES READ: NONE *
• FILES WRITTEN: NONE *
• MODULES CALLED: X.3 - GetCurrentTime *
• CALLING MODULES: 2 - PerfNormalActivities *
• 2.1.1 - EvalSOCInput *
• 3 - TermSystem *

• AUTHOR: Capt Allan F. Masty, GCS-83D *
• HISTORY: VSN Al - 3 November 1983 *

DispTime ()

int k

GetCurrentTime C)

for (k = 0; k < sizeof (tim); k++)
printf ("%c", tim [k])

printf ("\n");

return

U,,5

- D-59

U'.

,.-°

V D.2.5 CalcElapsedTime

* MODULE NUMBER / NAME: X.5 - CalcElapsedTime

DATE: 3 Nov 83 *

SVERSION: Al *

* FUNCTION: Calculates elapsed time from *
* ! FEP start-up to FEP termination *
* INPUTS: NCNE *
* OUTPUTS: N(NE *
* GLOBAL VARIABLES USED: h urs, minutes, seconds, ticks,

StartHr, StartMin, StartSec,
* StartTic
* GLOBAL VARIABLES CHANGED: hours, minutes, seconds, ticks
* GLOBAL TABLES USED: NONE *
* GLOBAL TABLES CHANGED: NONE *
* FILES READ: NONE *
* FILES WRITTEN: NONE I

* MODULES CALLED: X.3 - GetCurrentTime
CALLING MODULES: X.6 - DispElapsedTime *

" AUTHOR: Capt Allan F. Masty, GCS-83D *
* HISTORY: VSN Al - 3 November 1983 *

CalcElapsedTime ()I

int k

GetCurrentTime ()

if ((ticks -= StartTic) (0

ticks += 60;
--seconds ;

if ((seconds-= StartSec) < 0)
. {

seconds += 60
--minutes ;}

if ((minutes-: StartMin) < 0){
minutes += 60 ;
--hours ;

D-60

• "-..-.....-...... ,--.* .-

-.

.4,

. 1%

.-. '

h 44
.. : - .'.

.' D -6
"P,.

D.2.6 DispElapsedTime

MODULE NUMBER / NAME: X.6 - DispElapsedTime *

* DATE: 3 Nov 83 *
• VERSION: Al
• FUNCTION: Displays (upon the SOC terminal *
• screen) the time duration *
• determined in CalcElapsedTime. *
* INPUTS: NONE *
* OUTPUTS: NONE *
* GLOBAL VARIABLES USED: NONE *
"* GLOBAL VARIABLES CHANGED: NONE
* GLOBAL TABLES USED: tim
• GLOBAL TABLES CHANGED: tim *
• FILES READ: NONE
• FILES WRITTEN: NONE *
* MODULES CALLED: X.5 - CalcElapsedTime *
* CALLJ.AG MODULES: 3 - TermSystem

• AUTHOR: Capt Allan F. Masty, GCS-83D *
* HISTORY: VSN Al - 3 November 1983 *

DispElapsedTime)
~{

int k;

CalcElapsedTime ()

tim [0) = (hours / 10) + '0' ;
tim 1] = (hours % 10) + '0'
tim 2) ':' ;
tim [3] (minutes / 10) + '0'
tim C q] = (minutes % 10) + '0'
tim [5] ':' ;
tim 6] (seconds / 10) + '0'
tim [7] = (seconds % 10) + '0'
tim 8= ':'
tim [9) = (ticks / 10) + '0' ;
tim (10) = (ticks % 10) + '0'

for (k = 0; k < sizeof (tim); k++)
printf ("Uc", tim Ek])

printf ("\n");

return

D-62

* *.*cf q .'a. * * * -

D.2.7 GatherStats

* MODULE NUMBER / NAME: X.7 - GatherStats *

* DATE: 3 Nov 83 *
V"* VERSION: Al

* FUNCTION: Copies node queue accounting
* information to file LSIFEP.DAT

• for off-line data reduction.
• INPUTS: p = pointer to char array *

"* action = reason for call: *

]* 1 = entry into node *
• 2 = exit from node *
• OUTPUTS: NONE
• GLOBAL VARIABLES USED: NONE
• GLOBAL VARIABLES CHANGED: NONE *
• GLOBAL TABLES USED: tim *
• GLOBAL TABLES CHANGED: NONE *
• FILES READ: NONE *
• FILES WRITTEN: LSIFEP.DAT *
• MODULES CALLED: NONE
• CALLING MODULES: 2.1.2 - MoveMsgtoNodeTTxDMA *
* 2.3.1 - TTxtoDMAOutput *
• 2.3.2 - DMAtoTTxOutput *

* AUTHOR: Capt Allan F. Masty, GCS-83D *

* HISTORY: VSN Al - 3 November 1983 *

GatherStats (p, action)

char p[J ;
int action ;

int k;

char *c

GetCurrentTime ()

for (k = 0; k < sizeof (tim); k++)
putc (tim [k], fp) ;

putc (' ' fp)

putc (action + '0', fp) ;

putc ('', fp)

D-63

for Cc 0; c < THTSIZE c++)
putc Cp [c :i, fp

putc 1 \0152, fp)
putc (\0121v fp)

return;

-D-6

.,.,.

APPENDIX E

LSI FEP MEMORY LOAD MAP (LSIFEP.MAP)

This is the baseline Memory Load Map for the

LSIFEX.SAV executable program image.

,.."
-4-l

"

:."22
a,. -*

o

. .: .E -1

RT-11 LINK V06.01B Load Map Fri 07-Oct-83 00:00:00

LSIFEX.SAV Title: MAIN. Ident: V04.00

Section Addr Size Global Value Global Value

ABS. 000000 001000 (RW,I,GBLABS,OVR)
$SYSV$ 000012

$OHAND 001000 000252 (RW,I,GBL,REL,CON)
$OVRHV 001000 $OVRH 001004
V$READ 001034 V$DONE 001046
$VDF5 001234 $VDF4 001236
$VDF1 001246 $VDF2 001250

$OTABL 001252 000160 (RW,D,GBL,REL,OVR)
001432 057052 (RW,I,LCL,REL,CON)

SHELL 001432 SHELLX 001452
NXTARG 002436 SHLERR 003016
CLOSTD 003066 GETCHA 003140

" PUTCHA 003206 GETS 003442
FGETS 003706 PUTS 004206
FPUTS 004262 FREOPE 004342
PRINTF 004374 FPRINT 004424
SPRINT 004504 OUTF 004566
OUTDEC 005376 OUTOCT 005670
STRCAT 005772 STRCMP 006116
STRCOM 006256 STRCOP 006416
STRCPY 006520 STRLEN 006576
ECHAR 006646 ENCHAR 006656
GCHAR 006714 INTASC 006756
ASCIII 007102 GETTIM 007236
AG1FL 007506 ECHO 007510
ENABLO 007512 LINE 007514
LINEPT 007722 OBPTR 007724
OBSIZE 007726 RARYIT 007730
STDERR 007732 STDIN 007734
STDOUT 007736 UCONLY 007740
CCSWIT 007742 CCMPY 010006
CCMULT 010006 CCDIV 010114

'1 CCASR 010344 CCLRS 010344
CCLLS 010366 CCASL 010366
SETIDP 010414 ASTFN 010426
GETACH 010756 PUTACH 010772
INITIA 011006 ENTINT 011022
RETINT 011052 GTIME 011076
GAREA 011172 EXIT 011176
NODECH 014140 MAIN 024000
INITSY 024026 INITPS 026246
INITIN 030174 PERFNO 030630
SRVINP 032276 EVALSO 033066
MOVEMS 033466 BLDTRA 034140
SRVOUT 034746 SRVNOD 035432

E-2

1%*

.4

TTXTOD 036556 DMATOT 037356
TERMSY 040176 SOCINT 040572
TIINTE 041472 T2INTE 041656
T3INTE 042520 T4INTE 043362
T51NTE 044224 T6INTE 045066
T7INTE 045730 DMAINT 046572
SETUPF 050000 ABORTF 050350
DMABUS 050352 DMAWC 050354
ENDIDX 050356 FILEOP 050360
FP 050362 GODMAF 050364
LASTMS 050366 NBTCHA 050370
NBT 050372 PSTCHA 050422
PST 050424 STARTI 051414
STOPID 051416 THT 051420
INCHAR 051464 OUTCHA 055074

SYS$I 060504 000114 (RWI,LCL,REL,CON)
$DIVTK 060504 $DIV60 060532
ISPY 060576 $GVAL 060602

SYS$S 060620 000004 (RW,D,LCL,REL,CON)
$SYSLB 060620 $LOCK 060622
$CRASH 060623

Segment size = 060624 = 12490. words

0
Virtual overlay region 000001

--

Partition 000001 Segment 000001

100002 006676 (RWI,LCLRELCON)
DISPPS@ 100002 DISPNB@ 102540

4 GETCUR 104242 DISPTI@ 105112
DISPEL@ 105234 CALCEL 105736
GATHER@ 106256 HOURS 106604
MINUTE 106606 STARTH 106610
STARTM 106612 STARTS 106614
STARTT 106616 SECOND 106620
TIME 106622 TIM 106626
TICKS 106642

Segment size 006676 1759. words

Virtual overlay region 000002

Partition 000002 Segment 000002

120002 013576 (RW,I,LCLRELCON)

E-3

4

FOPEN @ 120010 FSIZE 120414
FDELET 120416 FCLOSE@ 120534
GETC @ 133122 PUTC @ 133306

Segment size 013576 3007. words

Transfer address = 001432
High limit = 060622 = 12489. words

Virtual high limit = 133576 = 23487. words,
next free address = 140000

Extended memory required 022500 4768. words

4E-

'i
*4

4."

.

4.-

',

"- E- 4

,?

4.

APPENDIX F

LSI FEP USER'S GUIDE

This Appendix contains detailed information on the

operation of the LSI FEP system. It contains sections

describing System Initialization, System Operation, System

Termination, and Off-line Accounting Data Reduction.

.4 Additional reference for the commands recognized by the

RT-11 monitor can be found in the RT-11 documentation set

F.1 System Initialization-

The steps required for system initialization include

Booting the RT-11XM Monitor, Setting the Date and Time, and

Starting the LSIFEP Program Image.

F-i

F.1.1 Booting the RT-11XM Monitor - The operator places

the system disk (volume ID ="RT11A") into the leftmost disk

drive of the Plessey Peripheral Systems cabinet. This disk

drive DYO:) is known to the system as the "system" disk

drive. The rightmost disk drive (DYl:) is known to the

system as the "user" disk drive. The operator then keys in

the following (upper case) command:

DY<cr>

where <cr> represents the "return" key. This tells the

microcode bootstrap program to boot the system from device

DYO. When the boot completes, the RT11SJ monitor will be

active. To boot the RT11XM monitor from the RT11SJ monitor,

type the command:

BOOT RT11XM<cr>

To return to the RT11SJ monitor from the RT11XM monitor,

type the command:

BOOT RT11SJ<cr>

At anytime during operation, the operator may desire

to reboot the system without powering-down and powering-up

the Plessey. This can be accomplished by toggling the

"BOOT" switch on the front Plessey panel. This action will

result in the microcode bootstrap loader outputting an

asterisk on the system console screen. At this point, the

F-2

above boot command can again be given. The contents

of disk volume ID 'RT11A" are contained in Figure F-I.

F.1.2 Setting the Date a Tim - When the system is

first booted, no date will be known to the monitor. To

remind the operator to set the date, the start-up indirect

command files for both monitors ("STARTS.COM and STARTX.COM)

contain a request to the operating system to display the

current date. This command:

DATE<cr>

will result in the monitor responding with the message:

?KMON-W-No Date

At this point, the operator should set the date by an

appropriate command:

DATE 16-OCT-83(cr>

Time can then be set. First, ensure that the "LTC"

switch mounted on the front Plessey panel is in the "ON"

position. This switch controls the Line Time Clock

interrupt hardware feature. Then, issue the appropriate

command:

-- TIME 10:45:30<cr>
%
5%

.5,

5'.

v F-3

& . S S a a a * a - J~A. 5 -1 - w.7 A * -7.1 * 5 .

16-Oct-83
Volume ID: RT11A
Owner :Masty

I PIP .SAV 23 09-Sep-80 DUP .SAV 41 09-Sep-80 1
I DIR .SAV 17 09-Sep-80 FORMAT.SAV 19 09-Sep-80
I RESORC.SAV 15 09-Sep-80 SYSMAC.SML 42 09-Sep-80
I MACRO .SAV 51 09-Sep-80 CREF .SAV 6 09-Sep-80

LINK .SAV 41 09-Sep-80 SRCCOM.SAV 13 09-Sep-80
I ODT .OBJ 9 21-Feb-80 QUEUE .REL 114 09-Sep-80 I
I BATCH .SAV 26 21-Feb-80 BAX .SYS 7 04-Aug-83 I
I DXX .SYS 4 04-Aug-83 DYX .SYS 4 04-Aug-83
I DMX .SYS 5 04-Aug-83 MTX .SYS 9 04-Aug-83
I LPX .SYS 2 23-Dec-81 LSX .SYS 2 23-Dec-81
I CRX .SYS 3 04-Aug-83 NLX .SYS 2 04-Aug-83 I
I RT11XM.SYS 102 04-Aug-83 SWAP .SYS 25 09-Sep-80 I
I TT .SYS 2 09-Sep- 8 0 DY .SYS 4 09-Sep-80
I RT11SJ.SYS 67 09-Sep-80 STARTS.BAK 1 02-Aug-83 I
1 KED .SAV 60 09-Sep-80 RUNOFF.SAV 33 10-Aug-81
I DUMP .SAV 8 09-Sep-80 LIBR .SAV 22 31-Mar-81

a'I SYSLIB.OBJ 47 13-Jul-81 QUEMAN.SAV 13 21-Feb-80 I
I ERROUT.SAV 17 21-Feb-80 cc .SAV 95 02-Nov-82 I
I STARTS.COM 1 26-Aug-83 STARTX.BAK 1 16-Sep-83 I
I STARTX.COM 1 16-Sep-83

11I 39 Files, 854 Blocks
120 Free blocks

Fig. F-i DYO: Directory

.F-

F.1.3 Startig the LSIFEP Program Ima - Disk (volume

ID "LSI FEP 211) contains the LSI FEP program. The

contents of this disk are contained in Figure F-2. This

disk must be mounted in the DYI drive and the following

. command issued:

RUN LSIFEP<cr>

The 'C' Shell responds with a prompt:

l '" ++

in response to which the operator will key a carriage

. return. Following this last carriage return, the 'C' Shell

releases control to the "main" program module in the

LSIFEP.SAV program. After program initialization has

V completed, the message:-p

++++++++ FEP Activated at 10:46:15

will be displayed upon the system operator console.

LSIFEP.SAV is a program image which can be run using the

RT11SJ or RT11XM monitor. The LSI FEP "2 disk also contains

the LSIFEX.SAV program image, which can only be run with the

RT11XM monitor.

.F-

;'V

#4'

.4.,

." "."F -

16-Oct-83
Volume ±I: LSI FE±' #1

I Owner :Masty

D CO 8 S p 8 O 8 S p 8
x D COM 1 28-Sep-83 F .COM 1 28-Sep-83

I LSIFEX.MAP 7 07-Oct-83 CH5 .RNO 1 03-Oct-83
I CH6 .RNO 1 03-Oct-83 FIG11 .RNO 4 03-Oct-83
I FIG31 .RNO 4 03-Oct-83 FIG32 .RNO 2 04-Oct-83 I
I TABLE1.RNO 14 04-Oct-83 FIG21 .RNO 3 04-Oct-83 I

-. I Al .RNO 25 03-Oct-83 TAL2RO 403-Ot8
I A6 .RNO 1 03-Oct-83 A7 .RNO 3 03-Oct-83
I A8 ERNO 1 03-Oct-83 FIG41 .RNO 6 03-Oct-83
I B .COM 1 03-Oct-83 CH4 .RNO 32 07-Oct-83
I CH3 .RNO 40 12-Oct-83 LFEPLO.C 47 12-Oct-83
I BIB .RNO 11 07-Oct-83 A5 .RNO 8 07-Oct-83
I CH2 .RNO 74 12-Oct-83 A3 .RNO 68 07-Oct-83
I THESIS.RNO 3 12-Oct-83 A2 .RNO 23 07-Oct-83 I
I CHi .RNO 30 12-Oct-83 A4 .RNO 50 12-Oct-83

30 Files, 472 Blocks
502 Free blocks

Fig. F-2 DYl: Directory

-F-

F.2 System Operation -

The LSI FEP system is expected to function with no

required operator control or maintenance activity. Three

commands have been implemented for operator monitoring of

the system status. These commands are described in the

following paragraphs.I."

F.2.1 NBT - The status of the Node Buffer Table can be

displayed by issuing the command:

NBT<cr>

from the SOC terminal to the LSI FEP program. The format of

k,,a typical Node Buffer Table is contained in Figure F-3.

F.2.2 PST - The status of the Port Status Table can be

displayed by issuing the command:

PST<cr>

from the SOC terminal to the LSI FEP program. The format of

a typical Port Status Table is contained in Figure F-4.

F.2-3 TIME - The current system time can be displayed by

issuing the command:

TIME<cr>

from the SOC terminal to the LSI FEP program.

F-7
.5.q

'5-

"' ! ~* ~ *~'*** . .~Vv~..ZZ~- .

-- -- - low pu ge high -

0 00-.9

i low pu get higho~d
pu = - B - - - I~d
ge 0 0 B 0 0 1999d

1 ig 200 2000 2000 3999

-F-8

- I

,i TID M I.LOW I.PUT I.GET I.HIGH O.LOW O.PUT O.GET O.HIGH I

*0 SOC L 0 4 0 199 0 0 0 199
1 T.1 L 200 200 200 399 200 200 200 399

. 2 T.2 L 400 400 400 599 400 400 400 599
3 T.3 L 600 600 600 799 600 600 600 799

-4 T.4 L 800 800 800 999 800 800 800 999
1 5 T.5 L 1000 1000 1000 1199 1000 1000 1000 1199 1
1 6 T.6 L 1200 1200 1200 1399 1200 1200 1200 1399 1
1 7 T.7 L 1400 1400 1400 1599 1400 1400 1400 1599 1

8 DMA L 1600 1600 1600 1799 1600 1600 1600 1799 1

LEGEND:

, i = index into PST
TID = Terminal identification

M = Terminal Mode
IILI = Line

'C' = Character

I.LOW = PST [i].InLowIdx (InChar index)
I.PUT = PST [i].InPutIdx
I.GET = PST [il.InGetIdx

I.HIGH = PST (i].InHighldx
O.LOW = PST [i].OutLowIdx (OutChar index)
O.PUT = PST [i].OutPutIdx
O.GET = PST [i].OutGetIdx

O.HIGH = PST [i].OutHighIdx

Fig. F-4 Port Status Table (PST)

F-9

............... ... *...........

F.3 System Termination -

The system can be terminated in an orderly manner by

issuing a control-C (C) from the SOC terminal. The "CTRL"

key is held down while the "C" key is depressed. This

results in the LSIFEP program restoring interrupt vector

addresses and closing the LSIFEP.DAT file prior to returning

control to the monitor.

FA Off-line Accounting Data Reduction -

The LSIFEP.DAT file is created during each run of

S the LSIFEP.SAV program. This file contains the accounting

information describing the data movement through the network

nodes. Each line in the file contains the time of

recording, a movement code, and the message Transport

Header. A typical LSIFEP.DAT file appears in Figure F-5.

Although the raw data file is produced, time did not allow

the generation of a data reduction program which could

process this file.

F-1O

.. ,' .-.-... *,.,.......,.... *.,.., -. ,, -

10:16:29:18 1 T.1LOOO20018TTx
10:16:29:21 2 T.1LOOO20018TTx
10:16:30:58 1 SOCLOO03002ODMA

110:16:31:01 2 SOCLOO03002ODMA
110:16:37:27 1 T.5LOOO4002OTTx

10:16:37:30 2 T.5LOOO4002OTTx
101:02 1 ILO508~

10:16:40:21 1 SOCLOOO50018TTx
10:16:440:32 2 SOCLOO0018TTx
10:16:44:342 1T.7L00060058TTx

LEGEND:

Irecord format: HH:MM:SS:TT R TID M NUMB COUN NOD

HH =hours (2 chars)
IMM = minutes (2 chars)

SS = seconds (2 chars)
TT =ticks (2 chars)

IR = reason for statistics gathering (1 char)
'41V 1= entry into queue

2 = exit from queue

ITID = Terminal Identifier (3 chars)

IM =Terminal mode (1 char)

INUMB =Message Sequence Number (4 chars)

COUN =Message Character Count (4 chars)

INOD =Node queue ID (3 chars)

Fig. F-5 LSIFEP.DAT File Format

F-11

- 44. a % .,- -.. - - . . -. * j ' :. ; -. j -- - ._..

..

APPENDIX G

LSI FEP PROGRAMMER'S GUIDE

This appendix provides software documentation for

the LSI FEP maintenance programmer. It begins by describing

the LSI-11 source code edit facility -- the Keypad Editor

(13]. It then proceeds with descriptions of the

compilation, assembly, and linking processes. Amplifying

information can be found in Chapter 4, Appendix C, and

Appendix D.

G.1 Editing The Source Code -

The PDP-11 Keypad Editor (KED) was used to create

the source programs during this implementation. KED is used

on a DEC VT-100 terminal and requires the file 'KED.SAV' on

G-1

5%

the DYO: disk (Fig F-I). KED allows use of the

S terminal's alphanumeric keys as well as the small keypad.

The keypad keys activate programmed requests for cursor

positioning, text deletion, text string search, and other

.' functions described in DEC documentation (13).

Activation of KED is accomplished by the command:

EDIT LFEPLO.C<cr>

where <cr> represents striking the RETURN key. After this

command, any of the KED directives [13] can be issued.

G.2 Compiling The Source Code -

The Telecon 'C' compiler was used to compile the 'C'

language source code into RT-11 Macro-11 assembly

instructions. The file "CC.SAV" must exist on the DYO:

drive [fig F-I 1. The 'C' compiler is activated by the

command:

- - R CC<cr>

at which time the 'C' shell prompt appears:

>?+

The programmer then keys the input ('C' source) file name

G-2

- - , - -- , - .,j - . . . J - % - . , . , % . . - . -• . .. - . - " -

and the output (Macro-11) file name [21; 23]. The format is

as follows:

LFEPLO.C >LFEPLO.MAC<cr>

All diagnostics from the compiler are directed to

the display terminal screen. The macro file which is

produced as output may be several times the size (disk

blocks) of the input 'C' text file. To ensure a large

contiguous disk area for the macro file, it is sometimes

necessary to "SQUEEZE" the DYl: disk prior to invoking the

'C' compiler. The format for the squeeze command [9:4.167]

is as follows:

SQUEEZE/NOQUERY DYI :<cr>

G.3 Assembling The Macro File -

-C.

The PDP-11 Macro Assembler [15] was used to produce

the object modules. Input to the assembler consists of

macro files containing the PDP-11 assembly instructions

[20:53-162]. The format [9:4.128] of the macro command is:

MACRO LFEPLO<cr>

This command specifies an input file of "LFEPLO.MAC" (.MAC

., G-- 3

- .. %...''C A

is default file type) and an output file of "LFEPLO.OBJ" (

default file type is .OBJ while default file name is same as

the input file name).

G.4 Linking The Object Modules -

So far, the documentation has only addressed the

programming issues for one program (LFEPLO.C) through

edit, compile, and assembly. Any functions and data items

that could not be found by the compiler during compilation

were treated as external references which would be supplied

later. The macro assembler, likewise, deferred action on

these externals and passed on the object file with these

externals still undefined. The linker, however, requires

all references to be resolved before it can create the .SAV

executable program image file. Therefore, it is at

this stage that all the pieces [para 4.3] of the LSIFEP

(or LSIFEX) system are brought together. Two indirect

command files [9:4.9] have been created to accomplish the
.

linking function. These inhirect command files exist on the

DYl: disk [fig F-2 I as "F.COM" (creates "LSIFEP.SAV") and

"X.COM" (creates "LSIFEX.SAV"). When all the ".OBJ" files

have been created, the "F.COM" file can be invoked using the

command:

G-4

:-.',' '. .- '. '-' -- - --, . -.- .- , - "- -- '-"v ' - ---- . -.. , ...- v .-G" ."." .

@F<cr>

wThe RT-11 monitor then executes the commands within

the "F.COM" file. The file contents are shown in Figure G-1

for "F.COM" and Figure G-2 for "X.COM". The output

of the "F.COM" file consists of the "LSIFEP.SAV" executable

image and a text file "LSIFEP.MAP" which shows the memory

mapping produced by the linker. The contents of

"LSIFEX.MAP" is contained in Appendix E. Execution

instructions for the executable images are contained in

Appendix F.

5%

,'.

G-5

N N

I This indirect command file is F.COM ---

1 It is used to invoke th RT-11 Linker.

I F.COM is invoked by typing @F
".'I at the console keyboard.

I The following files must be defined
SI prior to invoking the linker:

b~ q
I

.I I LFEPIO.OBJ
I I LFMLLO.OBJ
I I LFMLHI.OBJ
I I NBUFF.OBJ
I ILFEPHI.OBJ
I ILFEPLO.OBJ
'I I TBUFF.OBJ1 1
I The linker creates two files:I
I' I LSIFEP.SAV
1 1 LSIFEP.MAP
II
I I

S r link
Ilsifep,lsifep=lfepio,lfmllo,lfmlhinbuff//

i lfephi,lfeplo,tbuff//I AC
I C

.4 I

Fig. G-1 'F.COM' Indirect Command File

G-6

* * , * * * * * * * S*{S . - . . 4 q~* * 4 *
* i~* ~ % 4 *% 5

* I

" This indirect command file is X.COM
I It is used to invoke the RT-11 Linker.

I X.COM is invoked by typing @X
I at the console keyboard.

The following files must be defined
prior to invoking X.COM:

1 The commands forwarded to the Linker will create
an extended memory LSIFEX.SAV file which

I can be run on an LSI-11/23 using the
I IRT11XM extended memory monitor.

"I LFEPIO.OBJ - linked to low memory
1 LFMLLO.OBJ - linked to low memory

I LFMLHI.OBJ - linked to high memory
. NBUFF.OBJ - linked to low memory
I LFEPHI.OBJ - linked to high memory

I LFEPLO.OBJ - linked to low memory
I TBUFF.OBJ - linked to low memory

1 The linker creates two files:

LSIFEX.SAV
LSIFEX.MAP

I r link

I-.isifex,lsifex=lfepio,lfmllo,nbuff,lfeplo,tbuff//
I~ lfephi/V:1
-I lfmlhi/V:2//

-, AC

I' C

Fig. G-2 'X.COM' Indirect Command File

..- ?

G-7

,"

VITA

Capt Allan F. Masty was born in Detroit, Michigan on

13 February 1949. He graduated from St. Martin HS,

Detroit, in 1967. He received a Bachelor of Science degree

in Physics from the University of Detroit in 1971. He then

taught high school mathematics and physics for three years

prior to entering Air Force Officer Training School in 1974.

Upon commissioning, he was assigned as a Space Surveillance

Officer at Detactment 7, 14th Missile Warning Squadron

(ADCOM), MacDill AFB, Florida. During this tour, he

cross-trained from the space operations career field into

the computer programming career field. He was then assigned

0 to the first PAVE PAWS SLBM Early Warning unit --- 6th

Missile Warning Squadron, Otis AFB, Massachusetts --- in

1978. He then transferred to the second PAVE PAWS site ---

7th Missile Warning Squadron, Beale AFB, California --- in

1979. While at Beale AFB, he performed duties as the Chief,

Tactical Applications Branch for the PAVE PAWS System

Programming Agency (SPA), Stategic Air Command. He entered

the Air Force Institute of Technology in 1982 to pursue a

Masters degree in Computer Science.

-265-

%,,L

.5

4.. ' - , , .5 ,. . - "'.€ € " ' ." ." :."," """"-" """"" "" " ". . . -. * -"

L UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

II REPORT DOCUMENTATION PAGE
Ila. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED_____________ _____
a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE distribution unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/GCS/EE/83D-13

6a. NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

I(it applicable)
School of Engineering AFIT/ENG

6c. ADDRESS (City. State and ZIP Code) 7b. ADDRESS (City, State and ZIP Code)

Air Force Institute of Technology
Wright-Patterson AFB, Ohio 45433

go. NAME OF FUNDING/SPONSORING Bb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If aPplicable)

Sc. ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS. ____________

PROGRAM PROJECT TASK IWORK UNII
ELEMENT NO. NO. NO. j NO.

Masty, Allan Floyd B.S., Capt, USAF
ciTYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr.. Mo., Day) 15. PAGE COUNT

MSheisROT 1983 December 265
16. SUPPLEMENTARY NOTATION A; rVe 4 o?p release: [AW AFR I90-17

]Deun icri ~. A Pr~esi."-c. LEaemn

17. COSATI CODES I&. SUBJECT TERMS (Continue on reverse if necsyhLl czoj.1 ~c.o 441. I

FIELD GROUP SUB. GR. Communications Front End Processor,
09 02DEC LSI-11/23, Terminal Concentrator

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Title: Development of a Communications Front End Processor (PEP)
for the VAX-11/780 Using an LSI-11/23.

20. OISTRISUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

.'CLASSIFIEO/UNLIMITED KDCSAME AS RPT. C OTIC USERS 0 UNCLASSIFIED
122a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER 22c. OFFICE SYMBOL

~ (include Area Code)Gary LmnPh.D.
~J~1IA'L~~p513-255-3576 AFIT/ENG

DD FORM 14 7 3 , 83 APR EDITION OF I JAN 73 IS OBSOLETE.

SECURITY CLASSIFICATION OF THIS P10

. UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

-. A Communications Front-End Processor (FEP) was implemented for
.-4" a Digital Equipment Corporation (DEC) VAX-11/780 using a DEC LSI-11/23

microcomputer. The LSI-1I/23 serviced eight DEC VT-100 terminals and
communicated with the VAX-11/780 over an Able Computer Technology, Inc
Direct Memory Access (DMA) interface. This investigation proceeded
from a FEP design provided in a previous work and culminated in the
Telecon 'C' compiler language coding of those design specifications.
The design was translated into structure charts defining software
module functions and interfaces. Program Design Language (PDL) was
then used to outline the processing steps in a structured programming
format for each software module. A data dictionary was constructed to
document the data and functional module interfaces. The code was
implemented in a "top-down" manner.

' SECURITY CLASSIF .ICATI .ONO OP TN I PAl

4 ,.* . , . , , -.v ... , ,' < - .

-i, h l d - m J ldk l l h , m -- d &." . . " , i, " "

Jf, 4

V4A4,

014.

Alt;

v~ r

